2 – Codes de source – Codes de Huffman

CODES À LONGUEUR VARIABLE

- ▶ un code à longueur variable *C* est un langage caractérisé par le fait que tout mot de *C*⁺ a une factorisation unique en mots de *C*
- ▶ en *Théorie des langages*, on les appelle tout simplement des codes
- ▶ de façon équivalente, *C* est un code ssi :

$$C^{-1}C \cap C^*C^{*^{-1}} = \{\varepsilon$$

- en *Théorie des codes*, on les distingue des autres par l'appellation de codes non ambigus
- ▶ en *Cryptographie*, on parlera de codes uniquement déchiffrables

Exemple $C = \{0,01,110\}$ est un code (non-ambigu) mais pas $L = \{0,010,101\}$: en effet, le mot 0101010 a deux factorisations sur L Un langage L n'est pas un code si un mot de L^+ admet 2 factorisations distinctes :

CODES DE SOURCE

On suppose par défaut que l'on code sur l'alphabet binaire $\Sigma = \{0,1\}$

- ightharpoonup un codeur de source est le plus souvent une application de l'alphabet de source Ω vers l'ensemble Σ^*
- ightharpoonup les mots du code sont les images des symboles de Ω
- le code C est alors l'ensemble des mots du code
- ▶ à l'action de coder doit correspondre l'action de décoder
- ► le fait que l'application soit une injection ne suffit pas à assurer un décodage sans ambiguïté
- ightharpoonup il faut pour cela que l'extension de Ω^* à Σ^* soit elle aussi injective
- ightharpoonup ce qui se traduit par une bijection entre Ω^* et C^*
- un décodage ambigu correspond donc à un codage avec perte d'informations

Exemple Le codage : $a \rightsquigarrow 1$, $b \rightsquigarrow 01$ et $c \rightsquigarrow 10$ est ambigu contrairement au codage : $a \rightsquigarrow 1$, $b \rightsquigarrow 00$ et $c \rightsquigarrow 10$

CODES PRÉFIXES

- ► Un langage qui ne contient pas 2 mots distincts dont l'un est préfixe de l'autre est clairement un code non ambigu
- ► en *Théorie des langages*, on les appelle des codes préfixes (plus logiquement, en anglais, prefix-free codes)
- ► ainsi un code préfixe *P* vérifie :

$$P^{-1}P = \{\varepsilon\}$$

- ▶ en *Théorie des codes*, on parle de codes ayant la propriété du préfixe
- ▶ ils sont aussi appelés codes instantanés car le décodage a lieu dès qu'on parvient à lire un mot du code en entier
- ► ils sont encore appelés codes instantanément déchiffrables ou irréductibles
- ▶ à noter : tout code à longueur fixe possède la propriété du préfixe!

Exemple $C = \{0,01\}$ est un code mais n'est pas un code préfixe Par contre, le langage $P = \{01,001,10\}$ est un code préfixe

ALGORITHME DE SARDINAS-PATTERSON

- ► Cet algorithme de 1953 permet de décider si un langage (rationnel) donné *L* est un code non-ambigu
- ▶ il consiste en la construction d'une suite inductive d'ensembles :

Initialisation $X_0 = L^{-1}L \setminus \{\varepsilon\}$ Etape inductive $X_{n+1} = ((X_n)^{-1}L) \cup (L^{-1}X_n)$ Deux cas d'arrêt $\bullet \varepsilon \in X_n \Rightarrow L$ n'est pas un code $\bullet X_{n-1} = X_n \Rightarrow L$ est un code

Exemple

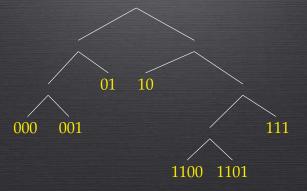
On peut vérifier avec cet algorithme si les langages rationnels suivants sont des codes (non-ambigus) ou pas :

$$K: 0 + 01 + 101$$

 $L: 0 + (01)^*10$
 $M: 0 + 101 + 100 + 111 + 1101 + 1100$

ARBRE DE CODAGE

- ▶ Un arbre de codage aussi dit arbre de Huffman est un arbre binaire complet *i.e.* chaque nœud a 0 ou 2 fils
- les arêtes menant aux fils gauches sont étiquetées par 0 (resp. 1 à droite)
- ▶ à chaque feuille correspond un mot du code obtenu en concaténant les étiquettes de la racine à la-dite feuille
- un code est l'ensemble des mots correspondant aux chemins dans l'arbre de la racine à une de ses feuilles



INÉGALITÉS DE KRAFT - MAC MILLAN

On suppose que le codage a lieu sur l'alphabet binaire

Théorème (Inégalité de Kraft)

Il existe un code *instantanné* dont les n mots sont de longueur $l_1, ..., l_n$ ssi :

$$\sum_{i=1}^n \frac{1}{2^{l_i}} \le 1$$

- la même condition nécessaire et suffisante a été établie antérieurement par Mac Millan pour les codes non-ambigus
- on en déduit que tout code non-ambigu possède un code préfixe équivalent
- ▶ ce résultat n'est pas *constructif* : il ne dit rien sur la manière de trouver un tel code

Exemple Soit le langage $L = \{10, 11, 000, 101, 111, 1100, 1101\}$

$$\sum_{i=1}^{7} \frac{1}{2^{l_i}} = 2.2^{-2} + 3.2^{-3} + 2.2^{-4} = 1/2 + 3/8 + 1/8 = 1$$

Il existe un code préfixe avec autant de mots et de même longueur que dans L, par exemple :

$$P = \{01, 10, 000, 001, 111, 1100, 1101\}$$

LONGUEUR MOYENNE

Soit $S = (\Omega, p)$ une source avec $|\Omega| = n$

- \triangleright chaque symbole de Ω est codé par un mot de C de longueur l_i
- ▶ si pour tout i, la longueur l_i est constante, on parle de codes à longueur fixe
- dans le cas contraire, on parle de codes à longueur variable
- la longueur moyenne (pondérée) d'un code est définie par :

$$L = \sum_{i=1}^{n} p_i \, l_i$$

elle est donc sans intérêt dans le cas des codes à longueur fixe ...

► Théorème (conséquence des inégalités de Kraft-Mac Millan) La longueur moyenne *L* des mots d'un code non-ambigu vérifie :

► lorsque chaque mot du code est d'une longueur égale à celle de son entropie, la longueur moyenne du code est la plus faible possible et égale à l'entropie du message :

$$L = H(S)$$

THÉORÈME DE SHANNON (TH. DU CODAGE SANS BRUIT)

On suppose que le codage a lieu sur l'alphabet binaire

- ▶ Premier théorème de Shannon Soit S une source sans mémoire, d'entropie H(S), il existe un code (non-ambigu) pour S dont la longueur moyenne L des mots de code est aussi voisine que l'on veut de l'entropie.
- toute source discrète sans mémoire admet donc un code non-ambigu vérifiant :

$$H(S) \le L < H(S) + 1$$

- en théorie, il existe des codes s'approchant indéfiniment de l'entropie mais rien n'est dit sur la façon de les trouver
- ▶ l'idée des codes entropiques (qui suivent) est de coder chaque symbole au plus près de son entropie pour approcher la borne inférieure

CODAGE DE SHANNON-FANO

- ► On connaît les symboles de l'alphabet et leurs probabilités d'apparition
 - 1. on les classe par ordre décroissant de fréquence
 - 2. à chaque symbole on associe le mot de code temporaire ε
 - 3. on partitionne l'ensemble ordonné en 2 moitiés à peu près équiprobables
 - 4. on ajoute 1 à la suite du code des symboles de la 1^{ère} moitié, 0 pour la 2^{de}
 - 5. on reprend en 2. pour chacun des sous-ensembles jusqu'à épuisement
- ▶ s'il est impossible de scinder en 2 ensembles de probabilités comparables, l'optimum n'est pas atteint
- c'est pour cela que ce codage qui date de 1949 a été détrôné par celui des codes de Huffman

Exemple

symbole	prob.					code
а	0.25	1	1			11
b	0.20		0			10
	0.15	0	1	1		011
d	0.15		1	0		010
	0.10	0	0	1		001
	0.10	0	0	0	1	0001
8	0.05	0	0	0	0	0000

MÉTHODE DIRECTE DE CODAGE BINAIRE

Exemple

• On considère une source $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5\}$ à 5 symboles suivant la distribution de probabilités :

- ▶ à l'aide d'un arbre, il est possible de trouver un code préfixe vérifiant les conditions sur les longueurs
- ► on obtient par exemple :

$$\omega_1 \rightsquigarrow 00 \quad \omega_2 \rightsquigarrow 010 \quad \omega_3 \rightsquigarrow 011 \quad \omega_4 \rightsquigarrow 100 \quad \omega_5 \rightsquigarrow 1010$$

CODES DE HUFFMAN

Une source probabilisée $S = (\Omega, p)$ avec $\Omega = \{\omega_1, ..., \omega_n\}$ et $p = \{p_1, ..., p_n\}$

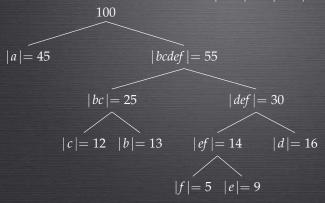
- ► L'algorithme de Huffman date de 1952 et consiste à contruire inductivement un arbre de codage associant systématiquement les mots de codes les plus courts aux symboles les plus fréquents (cf. TP 2):
 - 1. on construit à partir d' Ω un ensemble d'arbres-feuilles étiquetés par (ω_i, p_i)
 - 2. on pré-trie ces arbres par probabilité croissante
 - 3. on assemble en un seul arbre les 2 arbres de moindres probabilités
 - 4. on étiquette l'arbre obtenu de la concaténation des symboles et de la somme des probabilités
 - 5. si il reste plus d'un arbre, on reprend en 2.
 - 6. on associe à chaque élément d' Ω son mot de code

EXEMPLE

Fréquences d'apparition en % :

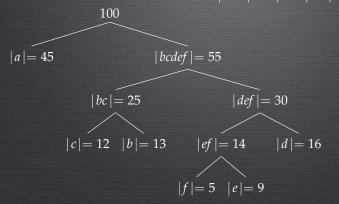
EXEMPLE

Fréquences d'apparition en % :

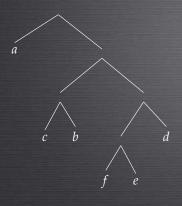


EXEMPLE

Fréquences d'apparition en % :



EXEMPLE : DÉCODAGE



а	b	С	d	e	f
0	101	100	111	1101	1100

A décoder :

► 110001110110001001011111100011001101

Voici une distribution de probabilités d'une source Ω qu'on veut coder en binaire :

Symbole	Proba. d'apparition
A	0,30
В	0,10
C	0,28
D	0,20
Е	0,12

Exercice:

- Quelle est l'entropie de cette source Ω ?
- Quel arbre de Huffman pour cette source Ω ?
- ▶ Quelle est la longueur moyenne pondérée des mots du code?
- ► Quelle conclusion?

CODAGE ARITHMÉTIQUE

- ► il s'agit d'un codage entropique
- cette méthode statistique utilise un tableau des fréquences d'apparition des symboles
- elle s'avère meilleure que les codes de Huffman dans la mesure où l'encodage n'a pas lieu en bits entiers
- ▶ on encode les caractères par des intervalles
- ▶ la sortie de l'encodage est un réel dans [0, 1]
- pour éviter les problèmes de portabilité, il y a moyen de travailler sur des entiers
- d'autres optimisations sont possibles pour manier des entiers les plus petits possibles

Ce codage sera présenté en détails au Cours 3 qui traite de compression

UN CODAGE OPTIMAL?

- les codes de Huffman ont par construction la propriété du préfixe
- ▶ tout code qui possède la propriété du préfixe est même contenu dans un code de Huffman
- ces codes nécessitent une connaissance statistique préalable de la distribution de symboles
- ► un tel code est optimal car la longueur moyenne *L* de ses mots est minimale :

$$H(S) \le L < H(S) + 1$$

- cependant, ce codage s'effectue en bit entier et on peut lui préférer le codage arithmétique (1990)
- ▶ les codes de Huffman restent une technique de compression courante couplée à d'autres codages spécifiques à la nature de la source : image, vidéo ou son
- ▶ JPEG, MPEG, MP3 et même LZH utilisent les codes de Huffman ou leurs variantes (semi-adaptatives ou adaptatives).

CODAGE NON INJECTIF

Certains codes sont utiles même s'ils ne permettent pas un décodage non-ambigu :

- compression avec perte : son, images
- détection des erreurs : calcul d'empreinte pour vérifier l'intégrité d'un message
- ► fonction de hachage :

$$h: \{0,1\}^* \to \{0,1\}^n$$

▶ les transformées de Fourier (DFT)

Exemples

Le bit de parité est un modeste exemple du calcul d'une empreinte :

▶ si $m = \sigma_1...\sigma_n$ alors il vaut $\sum_{i=1}^n \sigma_i \mod 2$

Utilisation des fonctions de hachage :

- ► MDC pour l'intégrité des messages
- ► MAC pour l'intégrité et l'authentification