
L2 Info, L2 MI, L2 ST Université Côte d’Azur
Algorithmique 1 2025/2026

Travaux dirigés no 5
Tas binaires

Un tas binaire ascendant (max-heap) est un tableau que l’on interprète comme un arbre binaire où
chaque élément d’un nœud est supérieur ou égal à ceux de ses fils. Notez au passage la différence
entre cet arbre-là et un Arbre Binaire de Recherche (ABR). Bien sûr, on peut aussi définir les tas
binaires descendants (min-heap) de façon symétrique.

Exercice 5.1 — Primitives
Donnez les fonctions de base qui prennent en entrée l’indice i d’un élément d’un tas et qui permettent
de se déplacer dans sa représentation sous forme d’arbre binaire (on ne se souciera pas ici des éven-
tuels débordements) :

1. gauche(. . .)
2. droit(. . .)
3. père(. . .)

Exercice 5.2 — Tamisage
L’algorithme de tamisage, dont vous avez vu la version récursive max_Heapify(T,n,i) en cours,
prend en entrée un tableau qui est un tas à sa première case près. Il retourne le tableau devenu tas-max
après une application du tamisage.

1. Faites la trace de cet algorithme de tamisage sur le tableau suivant :

5 11 9 8 10 4 0 6 3 2 7 1

2. Donnez à présent une version itérative max_Heapify(T) de cette fonction ainsi que sa com-
plexité.

Exercice 5.3 — Construction d’un tas-max
La fonction build_max_Heap(T) prend en entrée un tableau quelconque et en fait très efficace-
ment un tas binaire.

1. Trouver une idée afin de transformer un tableau en tas-max sans avoir recours à la fonction
insertion_max_Heap(T,elm). Vous l’appliquerez par exemple au tableau suivant :

1 0 7 8 2 5 3 4 9 6

2. Ecrivez le pseudo-code de l’algorithme build_max_Heap(T) puis analysez sa complexité.

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 5 — Tas binaires 1/2



Exercice 5.4 — Tri par tas
La notion de tas mène à un algorithme de tri efficace appelé le tri par tas (heapsort).

1. Ecrivez l’algorithme du tri par tas max_Heapsort(T). Pour cela, assemblez des fonctions
vues précédemment afin de trier les éléments d’un tableau quelconque par ordre croissant.

2. Ce tri s’effectue-t-il sur place? Indiquez sa complexité.

Exercice 5.5 — Insertion
Vous avez vu en cours la fonction insertion_min_Heap(T,elm) qui constitue une version ité-
rative de l’insertion d’un élément dans un tas-min.
Cette fois, écrivez une fonction principale insert_min_Heap(T,elm) qui lance une sous-fonction
récursive qui doit effectuer le même travail.

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 5 — Tas binaires 2/2


