Tas binaire : structure de données

1 2 3 4 5 6 7 8 9 10
ol8fsfel7]2jof1]4]5]

Algorithmique 1
Tas binaires

@ Un tas ascendant ou tas-max est un tableau dont les cases sont
Hajer Akid & Sandrine Julia numérotées de 1 3 n vérifiant :
si2i<n: TI[i]> T[2i]
si2i+1<n: TI[i]>T[2i+1]

Semestre 4
@ on définit de la mé&me maniere un tas descendant ou tas-min
[Tasbinaies 1/19 [Tasbinaies 2/19
I I
Tas binaire : représentation arborescente Tas binaire : stockage dans un tableau

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(ofs[3]6]7]2]0]1]4]5] [of8f3f6[7]2/0]1]4]5]

la valeur de la racine de I'arbre est en T[1]

la valeur de la racine du fils gauche de T[i] est T[2i]
la valeur de la racine du fils droit de T[i] est T[2i+ 1]

le pére de T[i] est T[[i/2]]

o le sous-tableau de T[|n/2] + 1] jusqu'a T[n] correspond aux feuilles.

3/19 P Teteres 4/19

Tamisage Exemple

L'opération de tamisage s'applique a un tableau qui n'est pas un tas a 1 2 3 4 5 6 7 8 9 10
cause du seul élément de sa premiére case. | 7 | 9 | 3 | 6 | 3 | > | 0 | 1 | 4 | 5 |

Comme le tableau T suivant :

1 2 3 4 5 6 7 8 9 10
(7l9fs]elsf2]of1]4]5]

Dans I'arbre, le tamisage échange I'élément de la racine avec le plus grand
de ses fils, et ainsi de suite jusqu'a ce qu'il soit a sa place (bubble down).

La complexité est en O(log(n)). On obtient le tas :

1 2 3 4 5 6 7 8 9 10
Lol8fsfel7]2]of1]4]5]

e Tesbinaies 5/19 6/19
| |
Exemple Exemple
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(7]9l3]6]8]2]0f1]4]5] lof7]3]6/8]2]0]1]4]5]
6/19 7/19

Exemple Exemple

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
9T+]sTo]s 2]0[1]+]5] LTl TeTe]

7/19

8/19

Exemple Exemple

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
ol8fsfel7]2]of1]4]5] olsfsfel7]2]of1]4]5]

8/19

9/19

Tamisage en tas-max

max_Heapify(entier T[], entier n, entier i) {
//version fonction récursive
g < gauche(i)
d<+ droit(i)
si (g < n et Tlg] >TJ[i])

imax < g

sinon
imax < i

si (d < n et T[d] > T[imax])
imax < d

si (imax # i) {

échanger(T[i],T[imax])
T < max_Heapify(T, n, imax)

}

retourner T

[Tesbinaies
Extraction
Cette opération consiste 3 :

o retirer |'élément a la racine

@ mettre a la racine le dernier élément en diminuant la taille du tas
@ re-tamiser le tas

Sa complexité est en O(log(n))

10/19

12/19

Tamisage en tas-max

max_Heapify_p(var entier T[], entier n, entier i) {

//version procédure récursive —> sur place
g < gauche(i)

d <+« droit(i)

si (g < n et T[g] > T[i])

imax < g

sinon
imax < i

si (d < n et T[d] > T[imax])
imax < d

si (imax # i) {

échanger (T[i],T[imax])
max_Heapify_p(T, n, imax)
¥
}

Extraction

Cette opération consiste 3 :
o retirer I'élément a la racine
@ mettre a sa place le dernier élément en diminuant la taille du tas
@ re-tamiser le tas

Sa complexité est en O(log(n))

11/19

entier heappop_max (var entier T[], entier n) {
max <— T[1]

échanger (T[1], T[n])

n < n—1
max_Heapify_p(T, n, 1)
retourner max

13/19

I
Insertion

Insertion d'un élément
@ On place I'élément a insérer aprés les autres
o |l est situé sur une feuille

@ On propage la propriété de tas de cette feuille jusqu’a la racine
(bubble up 1)

La complexité est en O(log(n))

Création d'un tas a partir d'un tableau

@ Solution immédiate en O(nlog(n))

@ Mais on peut transformer un tableau en tas sans procéder a I'insertion

de ses éléments un a un

o C'est plus efficace !

Insertion dans un tas-min

On ajoute 4 dans un tas_min.

14 /19

15/19

Insertion dans un tas-min

On ajoute 4 dans un tas_min.

Insertion

in

}

sertion_min_Heap(var entier T[], entier elm){
//version itérative et sur place
n < longueur(T)
n < n+l
T[n+1] < elm
pére < n div 2
fils < n
tant que (pére > 0 et T[pere] > T[fils]) {
échanger (T[pere],T[fils])
fils < pere
pere < peére div 2

}

15/19

16 /19

Recherche d'un élément et suppression Recherche de plus grand élément et tri

Recherche Recherche du k¢ plus grand élément

@ Un tas n'est pas adapté a la recherche d'un élément donné
@ On transforme un tableau en tas

o Le temps de recherche est forcément linéaire . . L .
@ On extrait successivement les k premiers éléments d'un tas-max

Suppression Tri par tas (Heapsort)

@ Avant de supprimer un élément, il faut le rechercher ...) . .
@ On peut trier le tableau sur place en le remplissant par la fin

@ La suppression consisterait ensuite a le remplacer par le dernier

s . s . @ On effectue alors des tas-max avec un nombre décroissant d'éléments
élément, diminuer le nombre d'éléments de 1 et tamiser.

T 17/19 e 18/19
|
File d'attente avec priorité

File d'attente
@ On insere les éléments avec une certaine priorité dans un tas-max

@ On les extrait successivement dans |'ordre de plus grande priorité

Modification des priorités
@ On peut modifier en cours les priorités des éléments

@ La recherche d'un élément n’est pas efficace.

PO Teteres 19/19

