
Algorithmique 1
Tas binaires

Hajer Akid & Sandrine Julia

Semestre 4

Tas binaires 1 / 19

Tas binaire : structure de données

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

Un tas ascendant ou tas-max est un tableau dont les cases sont
numérotées de 1 à n vérifiant :

si 2i ≤ n : T [i] ≥ T [2i]
si 2i + 1 ≤ n : T [i] ≥ T [2i + 1]

on définit de la même manière un tas descendant ou tas-min

Tas binaires 2 / 19

Tas binaire : représentation arborescente

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

9

8 3

6 7 2 0

1 4 5

Tas binaires 3 / 19

Tas binaire : stockage dans un tableau

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

la valeur de la racine de l’arbre est en T [1]

la valeur de la racine du fils gauche de T [i] est T [2i]
la valeur de la racine du fils droit de T [i] est T [2i + 1]

le père de T [i] est T [bi/2c]

le sous-tableau de T [bn/2c+ 1] jusqu’à T [n] correspond aux feuilles.

Tas binaires 4 / 19

Tamisage

L’opération de tamisage s’applique à un tableau qui n’est pas un tas à
cause du seul élément de sa première case.

Comme le tableau T suivant :

1 2 3 4 5 6 7 8 9 10

7 9 3 6 8 2 0 1 4 5

Dans l’arbre, le tamisage échange l’élément de la racine avec le plus grand
de ses fils, et ainsi de suite jusqu’à ce qu’il soit à sa place (bubble down).

La complexité est en O(log(n)). On obtient le tas :

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

Tas binaires 5 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

7 9 3 6 8 2 0 1 4 5

7

9 3

6 8 2 0

1 4 5

7

9 3

Tas binaires 6 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

7 9 3 6 8 2 0 1 4 5

7

9 3

6 8 2 0

1 4 5

7

9 3

Tas binaires 6 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

9 7 3 6 8 2 0 1 4 5

9

7 3

6 8 2 0

1 4 5

7

6 8

Tas binaires 7 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

9 7 3 6 8 2 0 1 4 5

9

7 3

6 8 2 0

1 4 5

7

6 8

Tas binaires 7 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

9

8 3

6 7 2 0

1 4 5

7

5

Tas binaires 8 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

9

8 3

6 7 2 0

1 4 5

7

5

Tas binaires 8 / 19

Exemple

1 2 3 4 5 6 7 8 9 10

9 8 3 6 7 2 0 1 4 5

9

8 3

6 7 2 0

1 4 5

Tas binaires 9 / 19

Tamisage en tas-max
max_Heapify (e n t i e r T [] , e n t i e r n , e n t i e r i) {

// v e r s i o n f o n c t i o n r é c u r s i v e
g ← gauche (i)
d ← d r o i t (i)
s i (g ≤ n e t T[g] > T[i])

imax ← g
s i n on

imax ← i
s i (d ≤ n e t T[d] > T[imax])

imax ← d
s i (imax 6= i) {

é changer (T[i] ,T[imax])
T ← max_Heapify (T, n , imax)

}
r e t o u r n e r T

}
Tas binaires 10 / 19

Tamisage en tas-max

max_Heapify_p (va r e n t i e r T [] , e n t i e r n , e n t i e r i) {
// v e r s i o n proc é dure r é c u r s i v e −> su r p l a c e
g ← gauche (i)
d ← d r o i t (i)
s i (g ≤ n e t T[g] > T[i])

imax ← g
s i n on

imax ← i
s i (d ≤ n e t T[d] > T[imax])

imax ← d
s i (imax 6= i) {

é changer (T[i] ,T[imax])
max_Heapify_p (T, n , imax)

}
}

Tas binaires 11 / 19

Extraction

Cette opération consiste à :
retirer l’élément à la racine
mettre à la racine le dernier élément en diminuant la taille du tas
re-tamiser le tas

Sa complexité est en O(log(n))

Tas binaires 12 / 19

Extraction

Cette opération consiste à :
retirer l’élément à la racine
mettre à sa place le dernier élément en diminuant la taille du tas
re-tamiser le tas

Sa complexité est en O(log(n))

e n t i e r heappop_max (va r e n t i e r T [] , e n t i e r n) {
max ← T[1]
é changer (T [1] , T[n])
n ← n−1
max_Heapify_p (T, n , 1)
r e t o u r n e r max

}

Tas binaires 13 / 19

Insertion

Insertion d’un élément
On place l’élément à insérer après les autres
Il est situé sur une feuille
On propage la propriété de tas de cette feuille jusqu’à la racine
(bubble up !)
La complexité est en O(log(n))

Création d’un tas à partir d’un tableau
Solution immédiate en O(n log(n))
Mais on peut transformer un tableau en tas sans procéder à l’insertion
de ses éléments un à un
C’est plus efficace !

Tas binaires 14 / 19

Insertion dans un tas-min

1

5 9

6 10 12 14

11 4

6

5

On ajoute 4 dans un tas_min.

Tas binaires 15 / 19

Insertion dans un tas-min

1

5

9

6

10 12 14

11

4

6

6

5

4

5

On ajoute 4 dans un tas_min.

Tas binaires 15 / 19

Insertion

i n se r t ion_min_Heap (va r e n t i e r T [] , e n t i e r elm) {
// v e r s i o n i t é r a t i v e e t s u r p l a c e
n ← l o ngueu r (T)
n ← n+1
T[n+1] ← elm
pè r e ← n d i v 2
f i l s ← n
tan t que (pè r e > 0 e t T[pè r e] > T[f i l s]) {

é changer (T[pè r e] ,T[f i l s])
f i l s ← pè r e
pè r e ← pè r e d i v 2

}
}

Tas binaires 16 / 19

Recherche d’un élément et suppression

Recherche
Un tas n’est pas adapté à la recherche d’un élément donné
Le temps de recherche est forcément linéaire

Suppression
Avant de supprimer un élément, il faut le rechercher ...
La suppression consisterait ensuite à le remplacer par le dernier
élément, diminuer le nombre d’éléments de 1 et tamiser.

Tas binaires 17 / 19

Recherche de plus grand élément et tri

Recherche du ke plus grand élément
On transforme un tableau en tas
On extrait successivement les k premiers éléments d’un tas-max

Tri par tas (Heapsort)
On peut trier le tableau sur place en le remplissant par la fin
On effectue alors des tas-max avec un nombre décroissant d’éléments

Tas binaires 18 / 19

File d’attente avec priorité

File d’attente
On insère les éléments avec une certaine priorité dans un tas-max
On les extrait successivement dans l’ordre de plus grande priorité

Modification des priorités
On peut modifier en cours les priorités des éléments
La recherche d’un élément n’est pas efficace.

Tas binaires 19 / 19

