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Diviser pour régner

Diviser un problème en sous-problèmes qui sont des instances plus
petites du même problème

Résoudre récursivement ces sous-problèmes

Combiner ces réponses pour obtenir la solution au problème

Avantages

Simplification conceptuelle

Accélération

réduire rapidement (de manière exponentielle) l’espace des problèmes
exploiter les points communs dans les solutions des sous-problèmes

Parallélisme

Localité
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Diviser pour régner

Exemples

Recherche dichotomique

Tri fusion

Karatsuba
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Le problème

Bien comprendre le problème

Faire le lien entre l’entrée et la sortie

Utiliser des bâtons pour représenter l’entrée

[|||||||||||||||] les éléments d’indice 1 à n

Les éléments peuvent être

triés ou non
dans un tableau, une pile, un tas, une liste
des nombres, des entiers d’un nombre, des éléments d’un ensemble
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L’élément fil rouge

Bien comprendre à quoi correspondent les bâtons

Trouver l’élément fil rouge permettant de formuler les sous-problèmes
1 le premier élément
2 le dernier élément
3 l’élément du milieu
4 la racine si c’est un arbre
· · ·

5 élément optimal
6 un élément aléatoire
7 un pivot

[|||||||||||||||]
[|||||||||||||||]
[|||||||||||||||]
[|||||||||||||||]

[|||||||||||||||]
[|||||||||||||||]
[|||||||||||||||]
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L’élément fil rouge

L’élément fil rouge permet-il d’étendre une solution partielle ?

L’élément fil rouge permet-il de formuler les sous-problèmes ?

Quelle est la complexité de la combinaison de l’élément filrouge avec
leur sous-problèmes ou solutions partielles ?
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Recherche dichotomique

Trouver un élément a dans un tableau trié de n cases

BS (L , i , j , a ) {
s i ( j < i ) { r e t o u r n e r FAUX }
t t ← i + ⌊( j− i ) /2⌋
s i ( L [ t t ] < a ) {

r e t o u r n e r BS (L , t t +1, j , a )
}
s i n on s i (L [ t t ] > a ) {

r e t o u r n e r BS (L , i , t t −1,a )
}
s i n on { r e t o u r n e r VRAI }

}
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Recherche

Trouver un élément a dans un tableau de n cases

Tri

Premier élément fil rouge

Dernier élément fil rouge

Élément du milieu fil rouge
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Exponentiation

Calculer xn avec n ≥ 0

pu i s s a n c e ( x , n ) {
y ← 1
pour ( i de 1 à n ) {

y ← x ∗ y
}
r e t o u r n e r y

}
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Exponentiation rapide

Calculer xn avec n ≥ 0

pu i s s a n c e ( x , n ) {
s i ( n > 1) {

y ← pu i s s a n c e ( x∗x , ⌊n/2⌋)
s i ( n mod 2 = 1) {

y ← x ∗ y
}
r e t o u r n e r y

}
r e t o u r n e r x

}
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Tri fusion

L’algorithme peut être décrit récursivement

On découpe en deux parties à peu près égales les données à trier

On trie les données de chaque partie

On fusionne les deux parties

La récursivité s’arrête car on finit par arriver à des listes composées d’un
seul élément et le tri est alors trivial
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Tri fusion

Fusion de deux tableaux triés

1 3 5

2 7 9

1 2 3 5 7 9
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Tri fusion

Tri dichotomique

1 5 3 6 4

1 5 3 6 4

1 5

1 5

3 6 4

6 4

64

3 4 6

1 3 4 5 6
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Tri fusion

merge s o r t (L , i , j ) {
s i ( j − i > 0) {

t t ← i + ⌊( j− i ) / 2⌋
merge s o r t (L , i , t t )
me rg e s o r t (L , t t +1, j )
merge (L , i , j )

}
}
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Multiplication de matrices carrées

Soient X et Y deux matrices de n × n
Calculer X · Y = Z

Zij =
n∑

k=1

Xik · Ykj

Exemple(
a b
c d

)(
e f
g h

)
=

(
ae + bg af + bh
ce + dg cf + dh

)
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Multiplication de matrices carrées

Idée

Découper X et Y en matrices carrées plus petites

X =
A B

C D

, Y =
E F

G H

X · Y =
AE + BG AF + BH

CE + DG CF + DH

T (n) = 8T
(
n
2

)
+ n2

T (n) ∈ O(n3)
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Algorithme de Strassen (1969)

7 multiplications !

T (n) = 7T
(
n
2

)
+ n2

T (n) ∈ O(nlog2(7))

M1 = A(F − H)
M2 = (A+ B)H
M3 = (C + D)E
M4 = D(G − E )
M5 = (A+D)(E +H)
M6 = (B−D)(G +H)
M7 = (C −A)(E + F )

X · Y =
AE + BG AF + BH

CE + DG CF + DH
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Algorithme de Strassen (1969)

7 multiplications !

T (n) = 7T
(
n
2

)
+ n2

T (n) ∈ O(nlog2(7))

M1 = A(F − H)
M2 = (A+ B)H
M3 = (C + D)E
M4 = D(G − E )
M5 = (A+D)(E +H)
M6 = (B−D)(G +H)
M7 = (C −A)(E + F )

X · Y =

M5 +M4 −M2 +M6 M1 +M2

M3 +M4 M7 +M1 −M3 +M5
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Deux points les plus rapprochés

Soit P = {p1, . . . , pn} un ensemble de points
On note d(pi , pj) la distance euclidienne entre pi = (xi , yi ) et pj = (xj , yj)

d(pi , pj) =
√

(xi − xj)2 + (yi − yj)2

Trouver deux points pa, pb ∈ P qui minimisent d(pa, pb)
On suppose que tous les points ont des coordonnées distinctes
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Deux points les plus rapprochés

En une dimension

Soit P = {p1, . . . , pn} un ensemble de points
On note d(pi , pj) la distance euclidienne entre pi = (xi ) et pj = (xj)

d(pi , pj) = |xi − xj |

Trouver deux points pa, pb ∈ P qui minimisent d(pa, pb)
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