
L2 Info, L2 MI, L2 ST Université Côte d’Azur
Algorithmique 1 2025/2026

Travaux dirigés no 3
Grands entiers

Nous allons analyser tout au long de ce TD des algorithmes qui prennent en entrée de grands
entiers x, y, N , a, b ... représentés en mémoire sur n bits. Clairement, les opérations arithmétiques
usuelles ne se font plus en temps constant O(1).

Exercice 3.1 — Multiplication
Vous avez vu en cours un algorithme itératif pour multiplier deux grands entiers x et y. Voici un
algorithme pour effectuer la même multiplication en récursif. Évaluez sa complexité en fonction
de n = log2(x) = log2(y).
Indication : considérez que la taille réelle de l’entrée m égale la somme des tailles des deux entiers.

M u l t i p l y (e n t i e r x , e n t i e r y) {
1 s i (y = 0) {
2 r e t o u r n e r 0

}
3 z ← M u l t i p l y (x , y d i v 2)
4 s i (y mod 2 = 0) {
5 r e t o u r n e r 2 * z

}
s i n o n {

6 r e t o u r n e r x + 2 * z
}

}

Exercice 3.2 — Calcul de la factorielle
Voici un algorithme récursif pour le calcul de la factorielle d’un entier N . Quelle est la complexité de
cet algorithme en fonction de N ? En déduire la complexité en fonction de la taille n de N .

F a c t _ r e c (e n t i e r N) {
1 s i (N ≤ 1) {
2 r e t o u r n e r 1

}
3 r ← F a c t _ r e c (N−1)
4 r e t o u r n e r N * r

}

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 3 — Grands entiers 1/2

Exercice 3.3 — Plus grand commun diviseur
Voici une version modernisée de l’algorithme d’Euclide calculant le PGCD de deux entiers a et b, on
suppose que a ≥ b. Quelle est la complexité de cet algorithme en fonction de la taille n commune
à ces deux entiers ? On pourra utiliser (et montrer pour les plus rapides d’entre vous ...) que si a est
supérieur ou égal à b alors a mod b < a/2.

E u c l i d e (e n t i e r a , e n t i e r b) {
1 s i (b = 0) {
2 r e t o u r n e r a

}
3 r e t o u r n e r E u c l i d e (b , a mod b)

}

Exercice 3.4

La suite de Fibonacci est définie comme suit :


Fib(0) = 0
Fib(1) = 1
∀N ≥ 0, F ib(N + 2) = Fib(N) + Fib(N + 1)

La suite croît très rapidement compte tenu qu’une approximation du terme Fib(N) est 20,694N .
L’algorithme suivant calcule le N ème nombre de Fibonacci pour tout N ≥ 0, l’appel initial étant
Fib_rec(N, 0, 1).
Quelle est, en fonction de N , la complexité de l’algorithme récursif suivant ?

F i b _ r e c (e n t i e r N, e n t i e r j , e n t i e r i) {
1 s i (N = 0) {
2 r e t o u r n e r j

}
3 r e t o u r n e r F i b _ r e c (N−1 , j + i , j)

}

Un algoritme naïf aurait consisté à effectuer deux appels récursifs. Évaluez sa complexité en fonction
de N puis comparez-la à celle de l’algorithme précédent.

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 3 — Grands entiers 2/2

