L2 Info, L2 MI, L2 ST Université Cote d’ Azur
Algorithmique 1 2025/2026

Travaux dirigés n° 3
Grands entiers

Nous allons analyser tout au long de ce TD des algorithmes qui prennent en entrée de grands
entiers z, y, N, a, b ... représentés en mémoire sur n bits. Clairement, les opérations arithmétiques
usuelles ne se font plus en temps constant O(1).

Exercice 3.1 — Multiplication
Vous avez vu en cours un algorithme itératif pour multiplier deux grands entiers x et y. Voici un
algorithme pour effectuer la méme multiplication en récursif. Evaluez sa complexité en fonction

de n = logy(z) = logy(y).
Indication : considérez que la taille réelle de I’entrée m égale la somme des tailles des deux entiers.

Multiply (X, y) {
st (y = 0) {
retourner 0
}
zZ <+ Multiply (x, y div 2)
si (y mod 2 = 0) {

retourner 2 % z

}
sinon {

retourner X + 2 % z
}

Exercice 3.2 — Calcul de la factorielle

Voici un algorithme récursif pour le calcul de la factorielle d’un entier N. Quelle est la complexité de
cet algorithme en fonction de N ? En déduire la complexité en fonction de la taille n de N.

Fact_rec (N) {
si (N <1) |
retourner 1
}
r «— Fact_rec(N-1)
retourner N = r

Algorithmique 1 — Université Cote d”Azur Travaux dirigés n° 3 — Grands entiers 12

Exercice 3.3 — Plus grand commun diviseur

Voici une version modernisée de 1’algorithme d’Euclide calculant le PGCD de deux entiers a et b, on
suppose que a > b. Quelle est la complexité de cet algorithme en fonction de la taille n commune
a ces deux entiers ? On pourra utiliser (et montrer pour les plus rapides d’entre vous ...) que si a est
supérieur ou égal a b alors a mod b < a/2.

Euclide (a, b) {
si (b =0) {
retourner a

}

retourner Euclide (b, a mod b)

Exercice 3.4

Fib(0) = 0
La suite de Fibonacci est définie comme suit: ¢ Fib(1) =1
VN >0, Fib(N +2) = Fib(N) + Fib(N + 1)

La suite croit trés rapidement compte tenu qu’une approximation du terme F'ib(NN) est 20694V,

L’algorithme suivant calcule le N*™ nombre de Fibonacci pour tout N > 0, I’appel initial étant
Fib_rec(N,0,1).
Quelle est, en fonction de N, la complexité de 1’algorithme récursif suivant ?

Fib_rec (N, i, 1) |
si (N = 0) {
retourner j

}

retourner Fib_rec(N-1, j+i, j)

}

Un algoritme naif aurait consisté a effectuer deux appels récursifs. Evaluez sa complexité en fonction
de N puis comparez-la a celle de I’algorithme précédent.

Algorithmique 1 — Université Cote d”Azur Travaux dirigés n° 3 — Grands entiers 2/2

