Algorithmique 1
Grands entiers

Hajer Akid & Sandrine Julia

Semestre 4

Nombres modernes

Les nombres arabes (et le systéme de base a 10 chiffres) sont une
représentation moderne (4° siecle)

0O 1 2 3 4 5 6 7 8 9
Arabic VoY Y ¢ o 1 vV A A
Devanagari 3 ¥ K & 9w ¢ 8
Bengali c Y X vV 8 €€ v a4 b B
Gurmukhi O 9 3 3 ® U & 2 t© ¢
102 10t 10°
! ! !
324 = 3x100 + 2x10 + 4x1
[
unités |
dizaines
centaines —

[logio(n)] + 1 = [log;o(n+ 1)]

Compter

On peut supposer qu’aprés le développement du langage, les humains
commencent a compter ..On peut également supposer que les doigts de la
main constituent le boulier naturel

j;:// ”'7,/
AL
& e
\ 7 IR
\{ y

@ Le systeme décimal et duodécimal ne sont pas un hasard, 10 et 12 ont
été les bases de la plupart des systemes de comptage dans I'histoire

Remarque

@ Abaque du grec Abacus « table a poussiere » est le nom générique
donné a un instrument mécanique plan pour le calcul et le comptage.

2/18

Mots de données

Les nombres machines sont des abstractions de nombres mathématiques :

lls sont codés par des bits, un groupe/mots (finis) de bits dont la nature
logique est compatible avec les traitements électroniques (on-off)

ngh Bit = T Low Bl
00010111 0001/0111 00010111 00010111

I_'—I
I 1

[double word (fword Uoyte]

La représentation est finie, sur n bits, on ne peut représenter qu’un
sous-ensemble contenant 2" valeurs.

4/18

Encoder les nombres

La plupart des machines proposent 2 méthodes de codage bien connues.

Complément a deux pour les La norme IEEE 754 pour les
entiers signés flottants
n—1 X = (_1)5 X 1‘m X 2(e—biais)

X=—bn_1 X2n+Zb; ><2i
i=0

1210 — 510 = 1210 + (—510) @ s : bit de signe (1 bit)
0000 1100 (1249)

@ m: mantisse (23 bits)
+ 11111011 (510)

= 0000 0111 (710 @ e : exposant (8 bits)
-2t 1,175 494 35 x 10~38
- —
2"t -1) 3,402 823 46 x 10
[Grandsenties 5/18
I

Le probleme d’échelle

@ On doit garantir que I'entier dans une application spécifique ne
provoque pas de débordement (overflow)

@ De nouvelles applications nécessitent de sortir du champ de la
machine et/ou du langage

e nombre estimé de connexions neuronales dans le cerveau humain
1014(S 247)

o la masse de la Terre est constituée d'environ 4 x 10%1(< 2172) nucléons

o nombre estimé d’atomes dans |'univers observable 10%°(< 2266)

o limite inférieure estimée de la complexité de I'arbre de jeu des échecs
(numéro de Shannon) 10'29(< 23%99)

P Gendewies 7/18

Représentation-machine limitée

La précision arithmétique fixée par la machine peut varier de 8 a 64 bits.

e 28 _1=255

e 216 _1=65535

0 232 — 1 =4294967295 ~ 4,294 x 10°

0 264 —1~1,844 x 10"

0 2128 _ 1~ 3,402 x 1038)

e 5! =120 Y F)33
13 —
e 8! =140320
o Fyy = 46368
e 12! = 479001600 .
~ 4,790 x 108 o Fu7 =~ 2,971 x 10

e 20! ~ 2,432 x 10'8 o Fg3~ 1,220 x 109

e 341~ 2,952 x 1038 o Figs ~ 3,328 x 10%)
[Grandsenties 6/18
]

Grands nombres

o L’arithmétique peut donc passer en précision arbitraire : bignum.
@ Des langages de programmation ont de telles options intégrées :
Lisp, PyTHON, PERL, HASKELL et RUBY

o D’autres comme C, C++4 ou JAVA ont des bibliothéques disponibles
pour les mathématiques entieres et a virgule flottante de précision
arbitraire

Plutot que de stocker les valeurs sous forme d'un nombre fixe de bits
binaires liés a la taille du registre du processeur, ces implémentations
utilisent généralement des tableaux de chiffres de longueur variable :

v élimine les débordements simples
v/ garantit les résultats sur toutes les machines

X réduit les performances

_ 8/18

Réduction des performances Entiers

Taille
e Nombre N : Size(N) = O(1)
o Tableau A = [x1, ..., xk] : Size(A) = O(k)

@ Le processeur est concu pour traiter des instructions sur des entrées

) . Complexité
de la taille d'un registre

. . R L _ Size(x) = Size(y) = O(1)
@ Les entrées plus grandes doivent étre divisées en morceaux de la taille
d'un registre

Instruction T S
X+y o(1) 0O(1)
X—y o(1) 0(1)
X Xy o(1) 0(1)
v o) o)
x<y 0(1) 0(1)
e Grandsenties 9/18 e Grandsenties 10/18
. .
Bignums Bignums
Taille
@ Nombre N : Size(N) = O(log(N))
o Tableau A = [xq, ..., xx] : Size(A) = O(k x log(N)) Complexité
N = max(x, y)
Complexité Size(x) < Size(N) = O(log(N))
N = max(x, y) Size(y) < Size(N) = O(log(N))
g%ze(x) E 2%%(%) ~ 8(}og(N)) Instruction T S
ize(y) < Sine(N) = O(log(N)) T —
Instruction T S MULT2(x) O(log(N)) O(log(N))
x+y O(log(N)) O(log(N)) DIv2(x) O(log(N)) O(log(N))
x—y O(log(N)) O(log(N)) ODD(x) o(1) o(1)
xxy O(log?(N)) O(log(N)) EVEN(x) o(1) o(1)
v O(log*(N)) O(log(N))
x<y O(og(N)) O(1)

P Gendewies /18 P Gendewies 12/18

Multiplication d’entiers Multiplication d’entiers
Soient x et y deux entiers non négatifs tels que x < 216 et y < 216, on Les opérations sont en O(1).
considére que les opérations se font en temps constant O(1). o
Complexité
multiplication (entier x, entier y) { TX) =T+ T+ Ty
resultat < 0 T1=0(1)
tant que (x > 0) { T: =0(1)
si (x mod 2 =1) { To= Z,Lflg(X)J(Tconﬂ + T3+ T5+ Ts)
resultat < resultat + vy Teond2 = O(1)
} T3 = Tcond3 + T4 = O(l) + 0(1) = 0(1)
y < 2 %y Ts = 0(1)
X < x div 2 Te = O(1)
J T, = S (0(1) + 0(1) + 0(1) + 0(1)) = S 0(1) = O(10g(x))
retourner resultat T —oa
} (x) = O(log(x))
Complexité : T(x) = O(log(x))
[Grandsenties 13/18 [Grandsenties 14/18
| |
Multiplication de grands entiers Multiplication de grands entiers
Soient x et y deux grands entiers non négatifs de n bits : les opérations ne sont plus en temps
Soient x et y deux grands entiers non négatifs de n bits.) constant.
. . .)) Complexité
multiplication (entier x, entier y) { T =Thd Tat Tr
resultat < 0 T1=0(1)
tant que (x > 0) { Tr = Ofllogé();]v)) = O(log(x)) + O(log(y)) = O(n + n) = O(n)
. To =S8N (Teopg2 + Ts + T5 + To)
s (0DD(x)) { Toondz — O(log()) = O()
resultat < resultat + vy T3 = Teonds + Ta
) 00 5 O(1og(r) + ogly’) = O1ox(s") ‘
4 = O(n) + O(log(r) + log(y’)) = O(log(y’)) car r <y’ avec y’ = 2'y
MULT2 (y) Ty = O(log(2'y")) = O(i) + O(log(y") = O() + O(n)
DIV2 (x) T3 = O(i) + O(n)
| Ts = O(log(y)) = O(n)
Te = O(log(x)) = O(n)
retourner resultat T, = £ 220 (0(n) + 0(i) + O(n) + O(n) + O(n)) = =2 O(n) car i < n
1 = log(x)O(n) = O(n?)
Complexité : T(n) = O(n?) A b

P Gendewies 15/18 P Gendewies 16/18

Complexité en espace

Algorithme non récursif

Soient X = {x1, x2, ..., xx} les (nouvelles) variables de |'algorithme :

k
S = Z Space(x;)

i=1

Avec Space(x) = max(Size(v)) ou v est n'importe quelle valeur stockée
dans la variable x

17/18

Complexité en espace

Algorithme récursif

Soit h la hauteur de I'arbre de récursion, f; les appels récursifs

h
S= Z Space(f;)
i=1

Avec Space(f) = max(Size(v)) ol v est n'importe quelle valeur stockée
pour |'appel

[Grandsenties 18/18

