
Algorithmique 1
Grands entiers

Hajer Akid & Sandrine Julia

Semestre 4

Grands entiers 1 / 18

Compter

On peut supposer qu’après le développement du langage, les humains
commencent à compter …On peut également supposer que les doigts de la
main constituent le boulier naturel

Remarque
Le système décimal et duodécimal ne sont pas un hasard, 10 et 12 ont
été les bases de la plupart des systèmes de comptage dans l’histoire
Abaque du grec Abacus « table à poussière » est le nom générique
donné à un instrument mécanique plan pour le calcul et le comptage.

Grands entiers 2 / 18

Nombres modernes

Les nombres arabes (et le système de base à 10 chiffres) sont une
représentation moderne (4e siècle)

0 1 2 3 4 5 6 7 8 9
Arabic ٠ ١ ٢ ٣ ٤ ٥ ٦ ٧ ٨ ٩

Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९

Bengali ০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯
Gurmukhi ੦ ੧ ੨ ੩ ੪ ੫ ੬ ੭ ੮ ੯

324 = 3×100 + 2×10 + 4×1

102 101 100

unités
dizaines

centaines

blog10(n)c+ 1 = dlog10(n + 1)e

Grands entiers 3 / 18

Mots de données
Les nombres machines sont des abstractions de nombres mathématiques :

N Z D Q R

Ils sont codés par des bits, un groupe/mots (finis) de bits dont la nature
logique est compatible avec les traitements électroniques (on-off)

00010111 00010111 00010111 00010111

bitnibble Low BitHigh Bit

byteworddouble word

La représentation est finie, sur n bits, on ne peut représenter qu’un
sous-ensemble contenant 2n valeurs.

Grands entiers 4 / 18

Encoder les nombres

La plupart des machines proposent 2 méthodes de codage bien connues.

Complément à deux pour les
entiers signés

x = −bn−1 × 2n +

n−1∑
i=0

bi × 2i

1210 − 510 = 1210 + (−510)
0000 1100 (1210)

+ 1111 1011 (510)
= 0000 0111 (710)

−2n−1

→
2n−1 − 1

La norme IEEE 754 pour les
flottants

x = (−1)s × 1.m × 2(e−biais)

s : bit de signe (1 bit)

m : mantisse (23 bits)

e : exposant (8 bits)

1, 175 494 35× 10−38

→
3, 402 823 46× 1038

Grands entiers 5 / 18

Représentation-machine limitée
La précision arithmétique fixée par la machine peut varier de 8 à 64 bits.

28 − 1 = 255

216 − 1 = 65 535

232 − 1 = 4 294 967 295 ≈ 4, 294× 109

264 − 1 ≈ 1, 844× 1019

2128 − 1 ≈ 3, 402× 1038

5 ! = 120

8 ! = 40 320

12 ! = 479 001 600
≈ 4, 790× 108

20 ! ≈ 2, 432× 1018

34 ! ≈ 2, 952× 1038

F13 = 233

F24 = 46 368

F47 ≈ 2, 971× 109

F93 ≈ 1, 220× 1019

F186 ≈ 3, 328× 1038

Grands entiers 6 / 18

Le problème d’échelle

On doit garantir que l’entier dans une application spécifique ne
provoque pas de débordement (overflow)
De nouvelles applications nécessitent de sortir du champ de la
machine et/ou du langage

nombre estimé de connexions neuronales dans le cerveau humain
1014(≤ 247)
la masse de la Terre est constituée d’environ 4× 1051(≤ 2172) nucléons
nombre estimé d’atomes dans l’univers observable 1080(≤ 2266)
limite inférieure estimée de la complexité de l’arbre de jeu des échecs
(numéro de Shannon) 10120(≤ 2399)

Grands entiers 7 / 18

Grands nombres

L’arithmétique peut donc passer en précision arbitraire : bignum.
Des langages de programmation ont de telles options intégrées :
Lisp, Python, Perl, Haskell et Ruby
D’autres comme C, C++ ou Java ont des bibliothèques disponibles
pour les mathématiques entières et à virgule flottante de précision
arbitraire

Plutôt que de stocker les valeurs sous forme d’un nombre fixe de bits
binaires liés à la taille du registre du processeur, ces implémentations
utilisent généralement des tableaux de chiffres de longueur variable :

3 élimine les débordements simples
3 garantit les résultats sur toutes les machines
7 réduit les performances

Grands entiers 8 / 18

Réduction des performances

Le processeur est conçu pour traiter des instructions sur des entrées
de la taille d’un registre
Les entrées plus grandes doivent être divisées en morceaux de la taille
d’un registre

Grands entiers 9 / 18

Entiers

Taille
Nombre N : Size(N) = O(1)

Tableau A = [x1, ..., xk] : Size(A) = O(k)

Complexité
Size(x) = Size(y) = O(1)

Instruction T S
x + y O(1) O(1)
x − y O(1) O(1)
x × y O(1) O(1)

x
y O(1) O(1)

x ≤ y O(1) O(1)

Grands entiers 10 / 18

Bignums
Taille

Nombre N : Size(N) = O(log(N))

Tableau A = [x1, ..., xk] : Size(A) = O(k × log(N))

Complexité
N = max(x , y)
Size(x) ≤ Size(N) = O(log(N))
Size(y) ≤ Size(N) = O(log(N))

Instruction T S
x + y O(log(N)) O(log(N))
x − y O(log(N)) O(log(N))
x × y O(log2(N)) O(log(N))

x
y O(log2(N)) O(log(N))

x ≤ y O(log(N)) O(1)

Grands entiers 11 / 18

Bignums

Complexité
N = max(x , y)
Size(x) ≤ Size(N) = O(log(N))
Size(y) ≤ Size(N) = O(log(N))

Instruction T S
x ≤ 0 O(log(N)) O(1)

MULT2(x) O(log(N)) O(log(N))
DIV 2(x) O(log(N)) O(log(N))
ODD(x) O(1) O(1)
EVEN(x) O(1) O(1)

Grands entiers 12 / 18

Multiplication d’entiers

Soient x et y deux entiers non négatifs tels que x ≤ 216 et y ≤ 216, on
considère que les opérations se font en temps constant O(1).

m u l t i p l i c a t i o n (e n t i e r x , e n t i e r y) {
r e s u l t a t ← 0
tan t que (x > 0) {

s i (x mod 2 = 1) {
r e s u l t a t ← r e s u l t a t + y

}
y ← 2 ∗ y
x ← x d i v 2

}
r e t o u r n e r r e s u l t a t

}
Complexité : T (x) = O(log(x))

Grands entiers 13 / 18

Multiplication d’entiers

Les opérations sont en O(1).

Complexité
T (x) = T1 + T2 + T7

T1 = O(1)
T7 = O(1)

T2 = Σ
blog(x)c
i=1 (Tcond2 + T3 + T5 + T6)

Tcond2 = O(1)
T3 = Tcond3 + T4 = O(1) + O(1) = O(1)
T5 = O(1)
T6 = O(1)

T2 = Σ
blog(x)c
i=1 (O(1) + O(1) + O(1) + O(1)) = Σ

blog(x)c
i=1 O(1) = O(log(x))

T (x) = O(log(x))

Grands entiers 14 / 18

Multiplication de grands entiers

Soient x et y deux grands entiers non négatifs de n bits.

m u l t i p l i c a t i o n (e n t i e r x , e n t i e r y) {
r e s u l t a t ← 0
tan t que (x > 0) {

s i (ODD(x)) {
r e s u l t a t ← r e s u l t a t + y

}
MULT2 (y)
DIV2 (x)

}
r e t o u r n e r r e s u l t a t

}
Complexité : T (n) = O(n2)

Grands entiers 15 / 18

Multiplication de grands entiers

Soient x et y deux grands entiers non négatifs de n bits : les opérations ne sont plus en temps
constant.

Complexité

T (n) = T1 + T2 + T7

T1 = O(1)
T7 = O(log(xy)) = O(log(x)) + O(log(y)) = O(n + n) = O(n)
T2 = Σ

blog(x)c
i=1 (Tcond2 + T3 + T5 + T6)

Tcond2 = O(log(x)) = O(n)
T3 = Tcond3 + T4

Tcond3 = O(1)
T4 = O(n) + O(log(r) + log(y ′)) = O(log(y ′)) car r ≤ y ′ avec y ′ ≈ 2i y
T4 = O(log(2i y ′)) = O(i) + O(log(y ′) = O(i) + O(n)
T3 = O(i) + O(n)
T5 = O(log(y)) = O(n)
T6 = O(log(x)) = O(n)
T2 = Σ

blog(x)c
i=1 (O(n) + O(i) + O(n) + O(n) + O(n)) = Σ

blog(x)c
i=1 O(n) car i ≤ n

= log(x)O(n) = O(n2)
T (n) = O(n2)

Grands entiers 16 / 18

Complexité en espace

Algorithme non récursif
Soient X = {x1, x2, . . . , xk} les (nouvelles) variables de l’algorithme :

S =
k∑

i=1

Space(xi)

Avec Space(x) = max(Size(v)) où v est n’importe quelle valeur stockée
dans la variable x

Grands entiers 17 / 18

Complexité en espace

Algorithme récursif
Soit h la hauteur de l’arbre de récursion, fi les appels récursifs

S =
h∑

i=1

Space(fi)

Avec Space(f) = max(Size(v)) où v est n’importe quelle valeur stockée
pour l’appel f

Grands entiers 18 / 18

