
L2 Info, L2 MI, L2 ST Université Côte d’Azur
Algorithmique 1 2025/2026

Travaux dirigés no 2
Récurrences

Exercice 2.1
Trouvez les solutions des relations de récurrence suivantes en utilisant le cours :

1. T (N) = T (N − 2) +N log(N) ;
2. T (N) = 3× T (N − 2) +N ;
3. T (N) = 7× T (N/2) +N3 log(N) ;
4. T (N) = 4× T (N/2) +N ;
5. T (N) = T (N/5) + T (4N/5) +N ;
6. T (N) = 4× T (N/2) +N2 ;
7. T (N) = T (

√
N) + log(N).

Exercice 2.2
Quelle est, en fonction de N , la complexité de l’algorithme récursif suivant ? On suppose que chaque
opération se fait en temps constant O(1). Commencez par écrire la relation de récurrence puis trouvez
sa solution.

TOTO2 (e n t i e r N) {
1 s i (N ≤ 1) {
2 r e t o u r n e r

}
3 pour (i ← 1 ; i ≤ N; i ++) {
4 pour (j ← 1 ; j ≤ N; j ← ++) {
5 a f f i c h e (' * ')

}
}

6 TOTO2(N−3)
}

Exercice 2.3
Quelle est, en fonction de N , la complexité de l’algorithme récursif suivant ? On suppose que chaque
opération se fait en temps constant O(1). Commencez par écrire la relation de récurrence puis trouvez
sa solution.

TOTO3 (e n t i e r N) {
1 s i (N ≤ 1) {
2 r e t o u r n e r

}
3 i ← 1
4 pour (i ← 1 ; i ≤ 3 ; i ++) {
5 TOTO3(N−1)

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 2 — Récurrences 1/2

}
}

Exercice 2.4 — Recherche dichotomique
L’algorithme suivant recherche l’élément a dans un tableau trié à n éléments. Quelle est la complexité
de cet algorithme?

BS (e n t i e r T [] , e n t i e r i , e n t i e r j , e n t i e r a) { / / T t r i é
1 s i (j < i) {
2 r e t o u r n e r FAUX

}
3 t t ← i + ⌊(j − i)/2⌋
4 s i (T [t t] < a) {
5 r e t o u r n e r BS (T , t t +1 , j , a)

}
6 s i n o n s i (T [t t] > a) {
7 r e t o u r n e r BS (T , i , t t −1 , a)

}
s i n o n {

8 r e t o u r n e r VRAI
}

Exercice 2.5 — Tri-fusion
L’algorithme du tri par fusion trie un tableau de n nombres. Trouvez sa complexité en fonction de n.

m e r g e _ s o r t (e n t i e r T [] , e n t i e r i , e n t i e r j) {
1 s i (j > i) {
2 t t ← i + ⌊(j − i)/2⌋
3 m e r g e _ s o r t (T , i , t t)
4 m e r g e _ s o r t (T , t t +1 , j)
5 merge (T , i , j)

}
}

Algorithmique 1 — Université Côte d’Azur Travaux dirigés no 2 — Récurrences 2/2

