
Algorithmique 1
Récurrence

Hajer Akid & Sandrine Julia

Semestre 4

1 / 18

Complexité d’un algortihme récursif ?

Relation de récurrence

T (n) =
k∑

i=1

T (ni) + f (n)

avec

n : taille en entrée

k : nombre d’appels récursifs

ni : taille en entrée de l’appel récursif

f (n) : coût en dehors des appels récursifs

2 / 18

Relation de récurrence

Exemple (Multiplication de 2 entiers)

Soient x et y deux entiers non négatifs de n chi!res, donner un algorithme
pour calculer x · y
r ecMu l t (x , y , n)

s i (n = 1) a l o r s
r e t o u r n e r x∗y

s i n on
m → n/2
p → 10ˆm
a → x/p
b → x % p
c → y/p
d → y % p
ac → r ecMu l t (a , c , m)
ad → r ecMu l t (a , d , m)
bc → r ecMu l t (b , c , m)
bd → r ecMu l t (b , d , m)
r e t o u r n e r 10ˆn ∗ ac + p ∗ (ad + bc) + bd

O(1)
O(1)

O(1)
O(1)
O(1)
O(1)
O(1)
O(1)

O(n)

= O(n)

= O(n)

T (n) = 4T
(
n

2

)
+ n

3 / 18

De la relation de récurrence vers la complexité

Méthode de substitution

Marche toujours

Approche mathématiques

Demande de l’intuition

Réécrire T (n) →
∑
i

ci fi (n)↑ pr

avec pr la partie résiduelle qui doit être positive

4 / 18

Méthode de substitution

Exemple (T (n) = 4T
(
n

2

)
+ n ↓ O(n3))

T (1) = 1
T (k) → ck

3

T (n) = 4T
(
n

2

)
+ n

T (n) → 4c
(
n

2

)3
+ n

= c
n3

2 + n

= cn
3 ↑

(
c
n3

2 ↑ n

)

T (n) → cn
3 si c n3

2 ↑ n ↔ 0, ↗c ↔ 2

On a bien T (n) ↓ O(n3)

5 / 18

Méthode de substitution

Exemple (T (n) = 4T
(
n

2

)
+ n ↓ O(n2))

T (1) = 1
T (k) → ck

2

T (n) = 4T
(
n

2

)
+ n

T (n) → 4c
(
n

2

)2
+ n

= cn
2 + n

= cn
2 ↑ (↑n)

Ne fonctionne pas car ↑n n’est pas positif

6 / 18

Méthode de substitution

Exemple (T (n) = 4T
(
n

2

)
+ n ↓ O(n2))

T (1) = 1
T (k) → c1k

2 ↑ c2k

T (n) = 4T
(
n

2

)
+ n

T (n) → 4
(
c1

(
n

2

)2 ↑ c2
n

2

)
+ n

= c1n
2 ↑ 2c2n + n

= c1n
2 ↑ c2n ↑ (c2n ↑ n)

T (n) → c1n
2 ↑ c2n ↑ (c2n ↑ n) si c2n ↑ n ↔ 0, ↗c2 ↔ 1

On a bien T (n) ↓ O(n2)

7 / 18

De la relation de récurrence vers la complexité

Méthode de l’arbre de récursion

Quand on n’a pas l’intuition

Dessin de l’arbre de recursion

Calcul du coût par niveau

8 / 18

Méthode de l’arbre de récursion

Exemple (T (n) = 2T (n ↑ 1) + 1)

1

1 1

1 1 1 1
...

...
...

...

1 1

1

2

22

n

2n

T (n) =

(
n↑1∑
i=0

2i
)
+ 2n = 2n ↑ 1 + 2n

= 2n+1 ↑ 1
T (n) ↓ O(2n)

9 / 18

Méthode de l’arbre de récursion

Exemple (T (n) = 4T
(
n

2

)
+ n)

n

n

2
n

2
n

2
n

2

n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4
n

4...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 1

n

2n

22n

log2(n)

4log2(n) = n
2

T (n) =

(
log2(n)↑1∑

i=0
2in

)
+ n

2 = n

(
log2(n)↑1∑

i=0
2i

)
+ n

2

= n(2log2(n) ↑ 1) + n
2

= n(n ↑ 1) + n
2

= 2n2 ↑ n

T (n) ↓ O(n2)

10 / 18

Méthode de l’arbre de récursion

Exemple (T (n) = T
(
n

2

)
+ T

(
n

4

)
+ n

2)

n
2

(n2)
2 (n4)

2

(n4)
2 (n8)

2 (n8)
2 (n

16)
2

...
...

...
...

1

1

n
2

5
16n

2

(
5
16

)2
n
2

→ log2(n)

< n

T (n) <

(
log2(n)↑1∑

i=0

(
5
16

)i
n
2

)
< n

2

(↓∑
i=0

(
5
16

)i
)

= 16
11n

2

T (n) ↓ O(n2)

11 / 18

De la relation de récurrence vers la complexité

Méthode 1

Uniquement quand la relation de récurrence est de la forme
T (n) = aT (n ↑ b) + f (n)

a, b des constantes positives a, b > 0

f (n) ↓ O(nc logd2 (n)) avec c , d ↔ 0

Deux cas :

1 a = 1 : T (n) ↓ O(nf (n))

2 a > 1 et d = 0 : T (n) ↓ O(a
n

b f (n))

12 / 18

Méthode 1

Exemple (T (n) = 2T (n ↑ 1) + 1)

a = 2, b = 1, c = 0, d = 0

a > 1, d = 0 ↘ cas 2

T (n) ↓ O(2n)

Exemple (T (n) = T (n ↑ 1) + n)

a = 1, b = 1, c = 1, d = 0

a = 1 ↘ cas 1

T (n) ↓ O(n2)

13 / 18

De la relation de récurrence vers la complexité

Méthode Master – 1989

Uniquement quand la relation de récurrence est de la forme
T (n) = aT (n

b
) + f (n)

a une constante a ↔ 1

b une constante b > 1

f (n) une fonction asymptotiquement positive

Trois cas :

1 f (n) ↓ O(nc) avec b
c < a : T (n) ↓ O(nlogb(a))

2 f (n) ↓ O(nc logd2 (n)) avec d ↔ 0 une constante et bc = a :
T (n) ↓ O(nc logd+1

2 (n))

3 f (n) ↓ O(nc) avec b
c > a : T (n) ↓ O(f (n))

14 / 18

Méthode Master

Exemple (T (n) = 4T
(
n

2

)
+ n)

a = 4, b = 2, c = 1

b
c = 21 = 2

b
c < a ↘ cas 1

T (n) ↓ O(n2)

Exemple (T (n) = 3T
(
n

2

)
+ n – Karatsuba)

a = 3, b = 2, c = 1

b
c = 21 = 2

b
c < a ↘ cas 1

T (n) ↓ O(nlog2(3))

15 / 18

Méthode Master

Exemple (T (n) = 2T
(
n

2

)
+ n – Tri fusion)

a = 2, b = 2, c = 1

b
c = 21 = 2

b
c = a ↘ cas 2

T (n) ↓ O(n log2(n))

Exemple (T (n) = 2T
(
n

2

)
+ n

2)

a = 2, b = 2, c = 2

b
c = 22 = 4

b
c > a ↘ cas 3

T (n) ↓ O(n2)

16 / 18

De la relation de récurrence vers la complexité
Méthode Akra-Bazzi – 1998

Généralisation de la méthode Master pour les relations de récurrence de la

forme T (n) =
k∑

i=1
T (bi ≃ n) + f (n)

bi une constante positive bi < 1

k une constante k ↔ 1

f (n) ↓ O(nc logd2 (n)) avec c , d ↔ 0

On pose e =
k∑

i=1
b
c

i

Trois cas :

1 e < 1 : T (n) ↓ O(nc logd2 (n))

2 e = 1 : T (n) ↓ O(nc logd+1
2 (n))

3 e > 1 : T (n) ↓ O(nx) avec x l’unique solution de
k∑

i=1
b
x

i
= 1

17 / 18

Méthode Akra-Bazzi

Exemple (T (n) = 4T
(
n

2

)
+ n)

k = 4, bi =
1
2 , c = 1, d = 0

e =
k∑

i=1
b
c

i
=

4∑
i=1

1
2 = 2 > 1 ↘ cas 3

4∑
i=1

(
1
2

)x
= 1 ⇐↘

(
1
2

)x
= 1

4 , x = 2

T (n) ↓ O(n2)

Exemple (T (n) = T
(
n

2

)
+ T

(
n

4

)
+ n

2)

k = 2, b1 =
1
2 , b2 =

1
4 , c = 2, d = 0

e =
k∑

i=1
b
c

i
=

(
1
2

)2
+

(
1
4

)2
= 5

16 < 1 ↘ cas 1

T (n) ↓ O(n2)

18 / 18

