
Algorithmique 1
Introduction

Hajer Akid & Sandrine Julia

Semestre 4

Introduction 1 / 21

Organisation

Thèmes
Diviser pour régner – Divide and Conquer
Algorithme glouton – Greedy algorithm
Programmation dynamique – Dynamic programming

Objectifs
Savoir analyser l’efficacité d’un algorithme
Savoir développer des algorithmes efficaces
Comprendre la notion de complexité d’un problème

Introduction 2 / 21

Organisation

Modalités de connaissances
Partiel
Contrôle terminal

Trouver les informations
Sur Moodle
Sur le web

Remerciements
à Emmanuel Kounalis
à Marie Pelleau

Introduction 3 / 21

Références

T. Cormen, C. Leiserson, R. Rivest, Introduction à l’algorithmique
S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani, Algorithms
T. Roughgarden, Algorithms Illuminated
C. Berge, Graphes et hypergraphes
M. Gondran et M. Minoux, Graphes et Algorithmes

Autres livres selon votre goût : ne pas hésiter à en consulter plusieurs

Introduction 4 / 21

Les algorithmes dans les medias

Introduction 5 / 21

Algorithmes

Les programmes deviennent gros
On ne peut plus programmer et penser n’importe comment

“For me, great algorithms are the poetry of computation. Just like verse,
they can be terse, allusive, dense, and even mysterious. But once
unlocked, they cast a brilliant new light on some aspect of computing.”

— Francis Sullivan

Introduction 6 / 21

Pourquoi étudier les algorithmes ?

Anciennes racines, nouveaux problèmes
Leur impact est vaste et de grande envergure
Pour devenir un programmeur compétent
Résoudre des problèmes qui ne pourraient pas être résolus autrement
Pour la stimulation intellectuelle

Introduction 7 / 21

Question d’un entretien d’embauche chez Google

3

4 2 5 1

2
5

2

7

3

5

2

6

10

2

4

Soit un histogramme avec n barres sur lequel on verse un volume d’eau
infini

Donner un algorithme pour calculer le volume d’eau résiduel (17)
Donner un algorithme pour calculer le volume d’eau résiduel en
temps linéaire

Introduction 8 / 21

Multiplication d’entiers

Soient x et y deux entiers non négatifs de n chiffres, donner un algorithme
pour calculer x · y

Comme à l’école

123

1234
× 5678

9872
+ 8638
+ 7404
+ 6170

7006652

Quelle est la complexité de cet algorithme ?

≤ 2n opérationsn lignes
≤ 2n2 opérations
≤ 4n2 opérations

Introduction 9 / 21

Multiplication d’entiers

Soient x et y deux entiers non négatifs de n chiffres, donner un algorithme
pour calculer x · y

Comme les égyptiens/russe/éthiopiens

1234 5678
617 11356
308 22712
154 45424
77 90848
38 181696
19 363392
9 726784
4 1453568
2 2907136
1 5814272

7006652

Diviser par 2 le nombre de droite
Multiplier par 2 le nombre de gauche
Additionner les nombres de gauche qui sont
face à un nombre impair

Quelle est la complexité de cet algorithme ?

Introduction 10 / 21

Multiplication d’entiers

Entiers à 2 chiffres

(10 · a + b) · (10 · c + d) = 100 · a · c + 10 · a · d + 10 · b · c + b · d
= 100 · a · c + 10 · (a · d + b · c) + b · d

→ 4 multiplications

(a + b) · (c + d) = a · c + a · d + b · c + b · d
a · d + b · c = (a + b) · (c + d)− a · c − b · d

(10 · a + b) · (10 · c + d) = 100 · a · c
+ 10 · ((a + b) · (c + d)− a · c − b · d)
+ b · d

→ 3 multiplications

Introduction 11 / 21

Multiplication d’entiers

Algorithme de Karatsuba (1962)
Appels récursifs pour la multiplication

x · y = (10n/2 · a + b) · (10n/2 · c + d)
= 10n · a · c + 10n/2 · (a · d + b · c) + b · d
= 10n · a · c + 10n/2 · ((a + b) · (c + d)− a · c − b · d) + b · d

Complexité ? O(nlog2(3))

Algorithme de Harvey et van der Hoeven (2021)
Complexité en O(n log(n))

Introduction 12 / 21

Notation de Landau

Definition
O(g(n)) est l’ensemble des fonctions f (n) telles que

∃n0 ∈ N,∃c ∈ R+, ∀n ≥ n0, f (n) ≤ c × g(n)

f (n) ∈ O(g(n)) s’il existe une constante c est un seuil à partir duquel f (n)
est inférieure à g(n) à un facteur c près

n

f (n)
c × g(n)

n

f (n)

c × g(n)

Introduction 13 / 21

Complexité

Règles de simplifications
Les constantes peuvent être omises : 14n2 devient n2

na domine nb si a > b : n2 domine n
Toute exponentielle domine tout polynôme : 2n domine n8

Tout polynôme domine tout logarithme : n domine log(n)5

Grand O
O(f (n)) + O(g(n)) = O(f (n) + g(n)) = O(max(f (n) + g(n)))
k∑

i=1
O(f (n)) = O

(k∑
i=1

f (n)
)

O(f (n))× O(g(n)) = O(f (n)× g(n))
c × O(f (n)) = O(c × f (n)) = O(f (n))

Introduction 14 / 21

Comparaison

nO(log(n))
O(
√

n)

O(n)

O(n log(n))

O(n2)
O(2n)

O(n!)

Introduction 15 / 21

Rappels Mathématiques

Sommes
m∑

k=1
(c × ak + bk) = c

m∑
k=1

ak +
m∑

k=1
bk

p∑
k=m

ak =
p∑

k=1
ak −

m−1∑
k=1

ak

m∑
k=1

k = 1 + 2 + · · ·+ m =m(m+1)
2

m∑
k=1

k2 = 12 + 22 + · · ·+ m2 =m(m+1)(2m+1)
6

m∑
k=0

rk = r0 + r1 + · · ·+ rm = rm+1−1
r−1 , r 6= 1

Introduction 16 / 21

Règles de calculs

Les instructions de base prennent un temps constant : O(1)
Les affections dépendent de la partie droite
On additionne les compléxités d’opérations de séquence :
O(f (n)) + O(g(n))
Branchement conditionnel on fait un max :

max(O(f (n)),O(g(n))) = O(f (n)) + O(g(n))

Exemple
s i (c o n d i t i o n) a l o r s

i n s t r u c t i o n 1
s i n on

i n s t r u c t i o n 2

O(g(n))
O(f1(n))

O(f2(n))

= O(g(n) + f1(n) + f2(n))

Introduction 17 / 21

Règles de calculs

Dans les boucles, il faut connaître le nombre d’itérations et la
complexité du corps de la boucle

Exemple
Si on a m itérations
t an t que (c o n d i t i o n) f a i r e

i n s t r u c t i o n s
O(g(n))
O(f (n)) = O

(m∑
i=1

g(n) + f (n)
)

Exemple
pour i de a à b f a i r e

i n s t r u c t i o n s O(f (n)) = O
(b∑

i=a
f (n)

)

Introduction 18 / 21

Calcul de la complexité d’un algorithme

1 Calcul de la complexité de chaque “partie” de l’algorithme
2 Combinaison des complexités grâces aux règles de calculs
3 Simplification du résultat grâce aux règles de simplifications

Élimination des constantes
Conservation du (des) terme dominant

Notation dans ce cours
T (n) la complexité en temps
S(n) la complexité en espace

Introduction 19 / 21

Calcul de la complexité d’un algorithme

Exemple (Tri à bulles)
A tableau de n entiers à trier
pour i de n à 2 f a i r e

pour j de 1 à i −1 f a i r e
s i (A [j +1] < A[j]) a l o r s

tmp ← A[j +1]
A[j +1] ← A[j]
A [j] ← tmp

O(1)
O(1)
O(1)
O(1)

= O(1) = O(i) = O(n2)

T (n) ∈ O(n2)

Introduction 20 / 21

Calcul de la complexité d’un algorithme

Exemple (Multiplication comme à l’école)
Les entiers sont représentés par des tableaux X et Y de taille n
pour i de n à 1 f a i r e

r ← 0
pour j de n à 1 f a i r e

tmp ← X[i] ∗Y[j] + r
M[i] [i+j] ← tmp%10
r ← tmp/10

r e s ← 0 ;
pour j de 1 à 2n f a i r e

r e s ← r e s ∗ 10
pour i de 1 à n f a i r e

r e s ← r e s + M[i] [j]

O(1)

O(1)
O(1)
O(1)

= O(1) = O(n)
= O(n2)

O(1)

O(1)

O(1) = O(n)
= O(n2)

= O(n2)

T (n) ∈ O(n2)

Introduction 21 / 21

