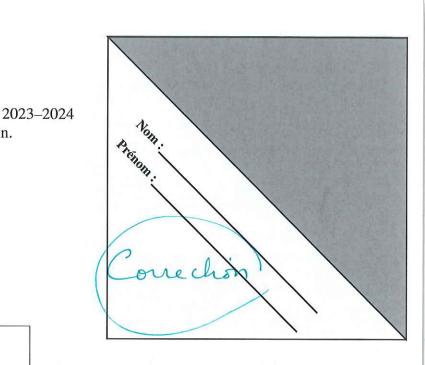
Université Côte d'Azur 20 Licence 3 Info – L3 Math-Info – L3 Sc. & Techn.

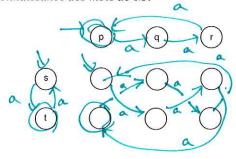

Automates & Langages

Examen du 10 janvier

Durée: 1h30

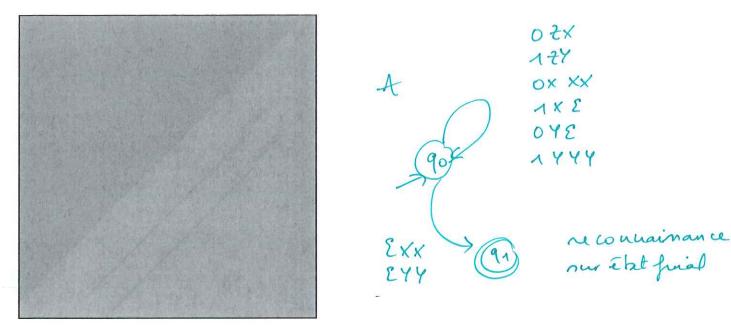
Seule une feuille manuscrite autorisée.

Exercice 1: (3 points) Considérons les langages rationnels L et K respectivement décrits par les expressions régulières suivantes sur l'alphabet $A = \{a\}$:


 $E_L: (aaa)^*$

 $E_K:(aa)^*$

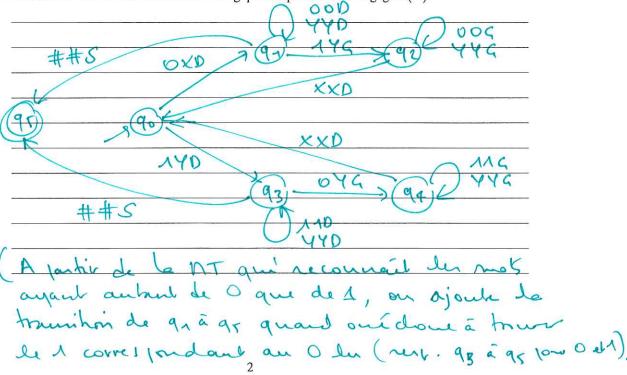
1. Soit $M=L\setminus K$. On peut aussi écrire $M=L\cap \overline{K}$ avec \overline{K} le complémentaire de K. Décrivez en français le langage M:


Not non vides dont le nombre de a est impair il dévisible par 3.

2. Dessinez un automate fini pour le langage L horizontalement en haut puis un automate fini pour le langage \overline{K} (le complémenataire de K) verticalement à gauche. Construisez alors un automate fini pour le langage M en effectuant l'intersection des automates précédents. Ne faites figurer que les transitions utiles à la reconnaissance des mots de M.

3. Déduisez une expression régulière pour le langage M après avoir éventuellement redessiné l'automate-produit au brouillon pour plus de clarté.

aga (ausuga)


Exercice 2: (5 points) Considérons la grammaire hors-contexte G suivante :

1. Quel est le langage hors-contexte L(G) engendré par cette grammaire?

L(a) = { we {0,1}*, | w|0≠ | w|1)

2. Dessinez (en haut à droite de la page) un automate à pile pour L(G) en signalant son mode de reconnaissance. Vous l'imaginerez entièrement, sans utiliser la méthode du cours pour passer automatiquement d'une grammaire à un automate à pile. Votre automate à pile est-il déterministe?

3. Dessinez ci-dessous une machine de Turing qui accepte le même langage L(G).

Exercice 3 : (5 points) Considérons la grammaire hors-contexte ${\cal G}$ suivante :

	Grammaire G					
	Axiome = S					
	$N = \{S\}$					
	$T = \{0, 1\}$ $P = \{S \rightarrow 0 \mid 0 S$					
	$S \rightarrow 1 S S S 1 S S S 1 $					
4						
1.	Transformez G en une grammaire G^\prime équivalente sous Forme Normale de Chomsky (toutes les					
productions seront de la forme $A \to BC$ ou $A \to a$ avec A, B, C non-terminaux et a terminal).						
	C'= (N', T, P', S) avec N'= S, X, X, A, B)					
	PI-1 S-D1X-S					
	$S \rightarrow X \cdot A \mid SR \mid A \times$					
	22. L A					
	R - X.S					
	Y .10					
	7					
	$X_1 \rightarrow A$					
2	Duradden à Paradore de mat 001010 and Palandidore de Carlos Vancourit Vancourit (CVV) (CVI)					
۷.	Procédez à l'analyse du mot 001010 par l'algorithme de Cocke, Younger et Kasami (CYK). S'il appartient au langage $L(G)$, déduisez-en un arbre de dérivation de ce mot pour la grammaire G' .					
	appartient au rangage $L(G)$, deduisez-en un arbie de derivation de ce mot pour la grammane G .					
	0 0 1 0 1 0					
	SXO SXO XA SXO XA SXO					
	AS (B (B)					
	1 AC B SB					
	S S X S					
	I SA I I I I					
	0 0 1 5 8					
	SE					
	donc 001010 G L(G)					
	1 1					
3.	Listez tous les facteurs du mot 001010 qui appartiennent au langage $L(G)$.					
	0 00 001 010					
	DD10 DD101 OLOLO IL OCIOLO Lui maine					
	0010 00101 01010 Il 001010 lui meme					
4.	La grammaire G initiale est-elle ambiguë? Pourquoi?					
	Oui, elle est ambienie car par exemple le					
	mot 1000 a 2 discontras le plus à gunche districte					
5.	Finalement, quel est le langage engendré par la grammaire G ?					
	L(G) = { we { lost " low } low }					
	1 1 10 10 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
86						

Exercice 4:	(4 points)	n considère le	langage des	carrés écrits	en unaire
-------------	------------	----------------	-------------	---------------	-----------

$$L = \{1^{k^2}, k > 0\}$$

Montrez en utilisant le lemme de l'étoile pour les langages hors-contexte que ce langage L n'est pas horscontexte.

Exercice 5 : (3 points) Considérons une grammaire G suivante :

Grammaire GAxiome = A $N = \{ X, Y, Z \}$ $T = \{ 0, 1, 2 \}$ $P = \{ X \rightarrow 1 X Y Z \}$ X $\rightarrow 1YZ$ $ZY \rightarrow YZ$ $0 Y \rightarrow 0 0$ $1 Y \rightarrow 10$ $0\,Z\,\rightarrow\,0\,2$ $2Z \rightarrow 22$

1. Cette grammaire G est-elle hors-contexte? Pourquoi?

Von cer

2. Donnez un exemple de la suite de dérivations permettant d'obtenir un mot de L(G) à partir de l'axiome A. On choisira un mot de longueur supérieure ou égale à 4.

110077

3. Quel est le langage L(G) engendré par la grammaire G? Est-il hors-contexte?