
Problem Solving
Constraint Programming

Marie Pelleau
marie.pelleau@univ-cotedazur.fr

Constraint Programming 1 / 41

Greedy Algorithm

Greedy Algorithm

Principle

At each step, a choice is made, the one that seems the best at that
moment

Builds a solution step by step

without revisiting previous decisions
by making at each step the choice that seems the best
hoping to achieve a global optimal result

Greedy approach

depending on the problem, no guarantee of optimality (greedy heuristic)
low cost (compared to exhaustive enumeration)
intuitive choice

Constraint Programming 2 / 41

Local Search

Local Search

Principle

Start from an initial solution

At each step, modify the solution

trying to improve the value of the objective function
hoping to achieve the global optimum

Local approach

depending on the problem, no guarantee of optimality (heuristic)
low cost

Remark

When there are no objective function Constraint Based Local Search

Constraint Programming 3 / 41

Constraint Programming

Constraint Programming

Tree Search

find a solution
find all solutions
find an optimal solution
prove the non-existence of a solution

Complete Approach

guarantees optimality
more costly

Constraint Programming 4 / 41

mailto:marie.pelleau@univ-cotedazur.fr
marie.pelleau@univ-cotedazur.fr

Constraint Programming

Send More Money

Description
DNES
EROM+
YENOM

Contraintes possibles

s∗1000 + e∗100 + n∗10 + d
C1 : + m∗1000 + o∗100 + r ∗10 + e

= m ∗ 10000 + o ∗1000 + n∗100 + e∗10 + y

C2 :s 6= e C3:s 6= n C4 :s 6= d C5 :s 6= m C6 : s 6= o
C7 : s 6= r C8:s 6= y C9 :e 6= n C10: e 6= d C11:e 6= m
C12:e 6= o ... C27:o 6= r C28:o 6= y C29: r 6= y

C1 : d + e y + 10 ∗ r1= r1 ∈ {0, 1}
C2 : r1 + n + r e + 10 ∗ r2= r2 ∈ {0, 1}
C3 : r2 + e + o n + 10 ∗ r3= r3 ∈ {0, 1}
C4 : r3 + s + m o + 10 ∗ r4= r4 ∈ {0, 1}
C5 : r4 m=

C6 :s 6= e C7 :s 6= n C8 :s 6= d C9 :s 6= m C10: s 6= o
C11: s 6= r C12:s 6= y C13:e 6= n C14: e 6= d C15:e 6= m
C16:e 6= o ... C31:o 6= r C32:o 6= y C33: r 6= y

Constraint Programming 5 / 41

Constraint Programming

Send More Money

Description

DNES
EROM+
YENOM

r1r2r3r4

Contraintes possibles

C1 : d + e y + 10 ∗ r1= r1 ∈ {0, 1}
C2 : r1 + n + r e + 10 ∗ r2= r2 ∈ {0, 1}
C3 : r2 + e + o n + 10 ∗ r3= r3 ∈ {0, 1}
C4 : r3 + s + m o + 10 ∗ r4= r4 ∈ {0, 1}
C5 : r4 m=

C6 :s 6= e C7 :s 6= n C8 :s 6= d C9 :s 6= m C10: s 6= o
C11: s 6= r C12:s 6= y C13:e 6= n C14: e 6= d C15:e 6= m
C16:e 6= o ... C31:o 6= r C32:o 6= y C33: r 6= y

Constraint Programming 5 / 41

Solving method

How to solve a CSP?

Constraint Programming 6 / 41

Solving method Generate and Test

Generate and Test
Naive method

Generate all possible assignments and check if they correspond to solutions

0

1

2

3

4

5

6

7

8

7

. . . 9

7

.

10

11

12

13

14

15

16

17

3

s = 1

e = 0

n = 0

d = 0

m = 1

o = 0

r = 0

y = 0 y = 9

s = 9

e = 5

n = 6

d = 7

m = 1

o = 0

r = 8

y = 2

Remark

To find the only solution,
generates:

92 ∗ 106 = 81 000 000 leaves
with the first model

24 ∗ 92 ∗ 106 = 1 296 000 000
with the second

Can we do better?

Constraint Programming 7 / 41

Solving method Generate and Test

Generate and Test

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v3

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v3 6= v6

C8 : v4 6= v5

C9 : v5 6= v6

C10 : v6 6= v7

∅

(v1, •)

(v2, •)

(v3, •)

(v4, •)

(v5, •)

(v6, •)

(v7, •)
?7

(v7, •)
7

(v7, •)
?7

(v7, •)
7

(v7, •)
7

(v7, •)
7

(v6, •) (v6, •)

(v7, •)
7

(v7, •)
7

(v7, •)
7

7

Constraint Programming 8 / 41

Solving method Forward Checking

Forward Checking

As soon as a variable is assigned, we try to filter the values for the other
variables

Replace the variable with its value in all constraints

Filtering can be applied if a constraint has only one remaining variable

0

1

r4 = 0

7

2

r4 = 1

3

4

. . .

5

6 7

8

9

10

7

7

3

r3 = 0

s = 2 s = 9

r2 = 0 r2 = 1

e = 5

r1 = 1

d = 7

{C4 : r3 + s + m = o + 10 ∗ r4,
C5 : r4 = m}

r4 = 0
⇒ r3 + s + m = o ∧m = 0 7

r4 = 1
⇒ r3 + s + m = o + 10 ∧m = 1
⇒ r3 + s + 1 = o + 10

Why wait for an assignment?

Constraint Programming 9 / 41

Solving method Forward Checking

Forward Checking

As soon as a variable is assigned, we try to filter the values for the other
variables

Replace the variable with its value in all constraints

Filtering can be applied if a constraint has only one remaining variable

0

1

r4 = 0

7

2

r4 = 1

3

4

. . .

5

6 7

8

9

10

7

7

3

r3 = 0

s = 2 s = 9

r2 = 0 r2 = 1

e = 5

r1 = 1

d = 7

Remark

To find the only solution, generates:

483 840 leaves with the first model

57 with the second

Why wait for an assignment?

Constraint Programming 9 / 41

Solving method Method with Filtering

Method with Filtering

The 2 key steps of constraint programming!

Propagation

Removes inconsistent values from the domains, meaning values that
cannot be part of a solution.

Exploration

Assigns a value to a variable.

Constraint Programming 10 / 41

Solving method Method with Filtering

Propagation
Consistency for a constraint

Different types of consistency:

Generalized arc consistency [Mackworth, 1977b]

Path consistency [Montanari, 1974]

Bound consistency [van Hentenryck et al., 1995]

...

All of these rely on the notion of support

Constraint Programming 11 / 41

Solving method Method with Filtering

Propagation
Consistency for a constraint

Definition (Support)

Let v1, . . . , vn be variables with finite discrete domains D1, . . . ,Dn, and C
be a constraint. The value xi ∈ Di has a support if and only if
∀j ∈ [1, n], j 6= i , ∃xj ∈ Dj such that C (x1, . . . , xn) is true

Example

C : r4 = m with Dr4 = [0, 1] and Dm = [1, 9]

1 for r4 has a support: 1 for m because C (1, 1) is true

0 for r4 does not have a support: ∀xm ∈ Dm,C (0, xm) is false

Constraint Programming 11 / 41

Solving method Method with Filtering

Propagation
Consistency for a constraint

Definition (Support)

Let v1, . . . , vn be variables with finite discrete domains D1, . . . ,Dn, and C
be a constraint. The value xi ∈ Di has a support if and only if
∀j ∈ [1, n], j 6= i , ∃xj ∈ Dj such that C (x1, . . . , xn) is true

Example

C : v1 6= v2 with D1 = D2 = {•, •, •}
• for v1 has a support: • for v2 because C (•, •) is true

• for v1 has a support: • for v2 because C (•, •) is true

• for v1 has a support: • for v2 because C (•, •) is true

Constraint Programming 11 / 41

Solving method Method with Filtering

Consistencies

Definition (Bound consistency)

Let v1, . . . , vn be variables with finite discrete domains D1, . . . ,Dn, and C
be a constraint. The domains are said to be bound-consistent (BC) for
C if and only if ∀i ∈ [1, n],Di = [ai , bi], where ai and bi have a support.

Example

Consider two variables v1, v2 with domains D1 = D2 = [−1, 4] and the
constraint v1 = 2v2. The bound-consistent domains for this constraint are
D1 = [0, 4] and D2 = [0, 2]

Constraint Programming 12 / 41

Solving method Method with Filtering

Consistencies

Definition (Generalized Arc Consistency)

Let v1, . . . , vn be variables with finite discrete domains D1, . . . ,Dn, and C
be a constraint. The domains are said to be generalized arc-consistent
(GAC) for C if and only if ∀i ∈ [1, n],∀x ∈ Di , x has a support.

Example

Let v1, v2 be two variables with domains D1 = D2 = [−1, 4] and the
constraint v1 = 2v2. The arc-consistent domains for this constraint are
D1 = {0, 2, 4} and D2 = {0, 1, 2}

Constraint Programming 13 / 41

Solving method Method with Filtering

Arc Consistency

Several implementations

AC1 and AC3 [Mackworth, 1977a]

AC4 [Mohr and Henderson, 1986]

AC5 [van Hentenryck et al., 1992]

AC6 [Bessière, 1994]

AC7 [Bessière et al., 1999]

AC2001 [Bessière and Régin, 2001]

AC3.2 and AC3.3 [Lecoutre et al., 2003]

Constraint Programming 14 / 41

Solving method Maintaining Generalized Arc Consistency

Maintaining Generalized Arc Consistency

Two phases alternate:

Propagation, using generalized arc consistency

Exploration, making a choice

0

1

2

7

-

-

-

-

3

7

4

5

7

6

7

7

8

3

9

7

10

7

0 1

0 1 0 1

4
5 6

7

r1 =

r2 =

e =

Remark

To find the only solution, generates:

6 leaves with the first model

7 with the second

Constraint Programming 15 / 41

Search Strategy

Search Strategy
The order of the variables matters

0

1

2

7

-

-

-

-

3

7

4

5

7

6

7

7

7 leaves

8

3

9

7

10

7

0 1

0 1 0 1

4
5 6

7

r1 =

r2 =

e =

0

1

7

-

-

-

-

2

3

7

4

5

7

6

3

6 leaves

7

7

8

7

0 1

0 1

4
5 6

7

r2 =

r1 =

e =

0

1

7

2

3

7

4

7

5

6

7

7

7

8

7

9

10

7

11

7

16 leaves

12

7

13

14

7

15

7

16

7

17

18

7

19

7

20

7

21

3

choice for r

choice for n

Constraint Programming 16 / 41

Search Strategy

Search Strategy

Choose a variable

Having the smallest domain (dom), First-fail
[Haralick and Elliott, 1979]
“To succeed, try first where you are most likely to fail”:

Appearing in the greatest number of constraints (deg)

dom + deg [Brélaz, 1979]

dom/deg [Bessière and Régin, 1996]

dom/wdeg [Boussemart et al., 2004]

. . .

Constraint Programming 17 / 41

Search Strategy dom

Search Strategy

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v4

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v4 6= v5

C8 : v4 6= v6

C9 : v5 6= v6

C10 : v6 6= v7

v1

{•, •, •}

v1 (v1, •)

{•, •, •}

{•, •, •}

{•, •}

{•, •}

v2

v2

(v2, •){•}

{•, •, •}

{•, •}

v4

{•, •, •}

{•, •, •}

v4

(v4, •)

{•}

{•, •}

{•, •}

v3

(v3, •)

v3

{•}

v5

v5

(v5, •)
{•}

v6

{•, •, •}

v6 (v6, •)

{•, •}

v7

v7

(v7, •)

6=

6=

6=
6=

6=

6=
6=

6=

6=

6=

Constraint Programming 18 / 41

Search Strategy dom

Search Strategy - dom

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v4

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v4 6= v5

C8 : v4 6= v6

C9 : v5 6= v6

C10 : v6 6= v7

v1

{•, •, •}

v1 (v1, •)

{•, •, •}

{•, •, •}

{•, •}

{•, •}

v2

v2

(v2, •)

{•}

{•, •, •}{•, •}

v4

{•, •, •}

{•, •, •}

v4

(v4, •)

{•}

{•, •}

{•, •}

v3

(v3, •)

v3

{•}v5

v5

(v5, •)

{•} v6

{•, •, •}

v6 (v6, •)

{•, •}v7

v7

(v7, •)

6=

6=

6=
6=

6=

6=
6=

6=

6=

6=

Constraint Programming 18 / 41

Search Strategy deg

Search Strategy - deg

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v4

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v4 6= v5

C8 : v4 6= v6

C9 : v5 6= v6

C10 : v6 6= v7

v4
{•, •, •}

{•, •, •}

{•, •, •}

{•, •, •}

{•, •, •}

{•, •, •}

v4

(v4, •)

{•, •}

{•, •}

{•, •}

{•, •}

{•, •}

v2

v2

(v2, •)

{•}{•}
v1 v3

v1 v3

(v1, •)
(v3, •)

{•}v5

v5

(v5, •)

{•} v6

{•, •, •}

v6 (v6, •)

{•, •}v7

v7

(v7, •)

6=

6=

6=
6=

6=

6=
6=

6=

6=

6=

Constraint Programming 19 / 41

Search Strategy Limits

Does it work all the time?

Constraint Programming 20 / 41

Search Strategy Limits

Limites

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v3

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v3 6= v6

C8 : v4 6= v5

C9 : v5 6= v6

C10 : v6 6= v7

v1

v2

v3

v4

v5

v6

v7

{•, •, •}

{•, •}

{•, •}

{•, •, •}

{•, •}

{•, •, •}

6=

6=

6=
6=

6=

6=
6=

6=

6=

6=

7 7

7 7

Constraint Programming 21 / 41

Search Strategy Limits

Limites

Coloriage de carte

V = {v1, . . . , v7}

D1 = · · · = D7

= {•, •, •}

C1 : v1 6= v2

C2 : v1 6= v3

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v3 6= v6

C8 : v4 6= v5

C9 : v5 6= v6

C10 : v6 6= v7

v1

v2

v3

v4

v5

v6

v7

{•, •, •}

{•, •}

{•, •}

{•, •}

{•, •}

6=

6=

6=
6=

6=

6=
6=

6=

6=

6=

Constraint Programming 22 / 41

Global Constraints

Global Constraints

Allows representing a set of constraints

Facilitates modeling

Dedicated algorithm to remove inconsistent values from domains

Constraint Catalog [Beldiceanu et al., 2010]

The most well-known

alldifferent

cycle

global cardinality

nvalue

element

Constraint Programming 23 / 41

Global Constraints alldifferent

alldifferent Constraint

First presented in [Lauriere, 1978]
Returns true if all variables are pairwise different

Example

The difference constraints in the send + more = money problem can be
rewritten as
alldifferent(s, e, n, d ,m, o, r , y)

Constraint Programming 24 / 41

Global Constraints alldifferent

alldifferent Constraint
Map Coloring

V = {v1, . . . , v7}
D1 = · · · = D7 = {•, •, •}
C1 : v1 6= v2

C2 : v1 6= v3

C3 : v2 6= v3

C4 : v2 6= v4

C5 : v3 6= v4

C6 : v3 6= v5

C7 : v3 6= v6

C8 : v4 6= v5

C9 : v5 6= v6

C10 : v6 6= v7

V = {v1, . . . , v7}
D1 = · · · = D7 = {•, •, •}
C1 : alldifferent(v1, v2, v3)
C2 : alldifferent(v2, v3, v4)
C3 : alldifferent(v3, v4, v5)
C4 : alldifferent(v3, v5, v6)
C5 : v6 6= v7

Constraint Programming 25 / 41

Global Constraints alldifferent

alldifferent Constraint

Not just syntactic sugar
Arc-consistency

Developed independently by [Costa, 1994] and [Régin, 1994]
Based on graph theory

Bound-consistency

Developed by [Puget, 1998] and later improved by
[Mehlhorn and Thiel, 2000] and [Lopez-Ortiz et al., 2003]
Based on the concept of Hall’s interval

Constraint Programming 26 / 41

Global Constraints alldifferent

Value Graph

Definition (Value Graph)

From the variables and domains of a CSP, we can create a bipartite graph,
called the value graph

The vertices correspond to the variables and the values

An edge connects a variable vi and a value x if x ∈ Di

Example

V = {v1, v2, v3, v4, v5}
D1 = {1, 2, 3}, D2 = {1, 2, 4, 5}, et D3 = D4 = D5 = {4, 5, 6}

v2 v3 v4 v5v1

1 2 3 4 5 6

Constraint Programming 27 / 41

Global Constraints alldifferent

Graph theory

Definition (Matching)

Given a graph G = (V ,E), a subset M of the edges E is called a
matching if and only if no two edges share a vertex,

v2 v3 v4 v5v1

1 2 3 4 5 6

The Hopcroft-Karp algorithm [Hopcroft and Karp, 1973] allows for
calculating the maximal matching in a bipartite graph

Constraint Programming 28 / 41

Global Constraints alldifferent

Graph theory

Definition (Maximal Matching)

A matching is said to be maximal if it contains the maximum number of
edges possible.

v2 v3 v4 v5v1

1 2 3 4 5 6

The Hopcroft-Karp algorithm [Hopcroft and Karp, 1973] allows for
calculating the maximal matching in a bipartite graph

Constraint Programming 28 / 41

Global Constraints alldifferent

Hopcroft-Karp algorithm

v1

v2

v3

v4

v5

1

2

3

4

5

6

⇒

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 29 / 41

Global Constraints alldifferent

Strongly Connected Component

Definition (Directed Graph)

A directed graph G = (V ,E) is a graph where the edges have a direction,
and they are called arcs

Definition (Strongly Connected Component)

Given a directed graph G = (V ,E), a strongly connected component
is a maximal set of vertices such that for each vertex in the set, there
exists a path to every other vertex in the set

Tarjan’s algorithm [Tarjan, 1972] efficiently computes the strongly
connected components in a graph

Constraint Programming 30 / 41

Global Constraints alldifferent

Tarjan algorithm

v1

v2

v3

v4

v5

1

2

3

4

5

6

⇒

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 31 / 41

Global Constraints alldifferent

alldifferent: propagation for arc-consistency

Exemple

V = {v1, v2, v3, v4, v5}
D1 = {1, 2, 3}, D2 = {1, 2, 4, 5}, et
D3 = D4 = D5 = {4, 5, 6}

We find a maximal matching ⇒ a solution

We search for strongly connected
components ⇒ permutations

We add the isolated values to the initial
domains

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 32 / 41

Global Constraints alldifferent

alldifferent: propagation for arc-consistency

Exemple

V = {v1, v2, v3, v4, v5}
D1 = {1, 2, 3}, D2 = {1, 2, 4, 5}, et
D3 = D4 = D5 = {4, 5, 6}

We find a maximal matching ⇒ a solution

We search for strongly connected
components ⇒ permutations

We add the isolated values to the initial
domains

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 32 / 41

Global Constraints alldifferent

alldifferent: propagation for arc-consistency

Exemple

V = {v1, v2, v3, v4, v5}
D1 = {1, 2, 3}, D2 = {1, 2, 4, 5}, et
D3 = D4 = D5 = {4, 5, 6}

We find a maximal matching ⇒ a solution

We search for strongly connected
components ⇒ permutations

We add the isolated values to the initial
domains

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 32 / 41

Global Constraints alldifferent

alldifferent: propagation for arc-consistency

Exemple

V = {v1, v2, v3, v4, v5}
D1 = {1, 2, 3}, D2 = {1, 2}, et
D3 = D4 = D5 = {4, 5, 6}

We find a maximal matching ⇒ a solution

We search for strongly connected
components ⇒ permutations

We add the isolated values to the initial
domains

v1

v2

v3

v4

v5

1

2

3

4

5

6

Constraint Programming 32 / 41

Global Constraints alldifferent

Hall’s Interval

Definition

Let (v1, . . . , vn) be variables with finite discrete domains (D1, . . . ,Dn).
Given an interval I , we define KI = {vi | Di ⊆ I}. I is a Hall’s interval if
|I | = |KI |.

Example

Consider the following problem:

V = {v1, v2, v3, v4, v5}
D1 = [1, 3], D2 = [1, 5], et D3 = D4 = D5 = [4, 6]

I = [4, 6] is a Hall’s interval because KI = {v3, v4, v5} and we have
|I | = |KI |
I = [1, 3] is not a Hall’s interval because KI = {v1} and |I | 6= |KI |

Constraint Programming 33 / 41

Global Constraints alldifferent

alldifferent: propagation for bound-consistency

For each lower bound a
and upper bound b of the
domains, we check if
I = [a, b] is a Hall’s
interval

If I is a Hall’s interval, we
can remove the values in I
from the domains of
variables in V \ KI

Exemple

Consider the following problem:

V = {v1, v2, v3, v4, v5}
D1 = [1, 3], D2 = [1, 3], et
D3 = D4 = D5 = [4, 6]

I = [1, 6] is not a Hall’s interval

I = [1, 5] is not a Hall’s interval

I = [1, 3] is not a Hall’s interval

I = [4, 5] is not a Hall’s interval

I = [4, 6] is a Hall’s interval ⇒
we remove the values 4, 5, 6
from the domains of variables
not in KI

Constraint Programming 34 / 41

Global Constraints gcc

global cardinality Constraint

First presented in [Oplobedu et al., 1989]

global cardinality(global cardinality({v1, . . . , vn}︸ ︷︷ ︸,{x1, . . . , p}︸ ︷︷ ︸,{nb1, . . . , nbp}︸ ︷︷ ︸)

Variables Values Occurrences

Returns true if among the variables {v1, . . . , vn}, there are nbi variables
having the value xi

Exemple

global cardinality({v1, v2, v3, v4, v5, v6}, {0, 1}, {2, 4})
In some cases, we can express an alldifferent using a global cardinality
alldifferent(v1, v2, v3) = global cardinality({v1, v2, v3}, {•, •, •}, {1, 1, 1})

Constraint Programming 35 / 41

Global Constraints gcc

global cardinality Constraint

Arc-consistency

Developed by [Régin, 1996]
Based on a flow algorithm

Bound-consistency

Developed by [Quimper et al., 2003]
Based on the concept of Hall’s interval
Developed by [Katriel and Thiel, 2003]
Based on convexity to improve the efficiency of the flow algorithm

Constraint Programming 36 / 41

Global Constraints gcc

Sports Schedule

Description

n teams, n − 1 weeks, and n/2 periods

each pair of teams plays exactly once

each team plays one match every week

each team plays at most 2 times in the period

Example (Possible solution)

S1 S2 S 3 S4 S5 S6 S7

P1 1 vs 2 1 vs 3 5 vs 8 4 vs 7 4 vs 8 2 vs 6 3 vs 5
P2 3 vs 4 2 vs 8 1 vs 4 6 vs 8 2 vs 5 1 vs 7 6 vs 7
P3 5 vs 6 4 vs 6 2 vs 7 1 vs 5 3 vs 7 3 vs 8 1 vs 8
P4 7 vs 8 5 vs 7 3 vs 6 2 vs 3 1 vs 6 4 vs 5 2 vs 4

Constraint Programming 37 / 41

Global Constraints gcc

Magic Sequence

Description

A magic sequence of length n is a sequence of integers v0, . . . , vn−1, where
each integer i ∈ {0, . . . , n − 1} appears exactly vi times in the sequence

Magic Sequence (n = 10)

vi 6 2 1 0 0 0 1 0 0 0

0 1 2 3 4 5 6 7 8 9

Constraint Programming 38 / 41

Global Constraints gcc

Langford Sequence

Description

A Langford sequence is a sequence of integers v1, . . . , vk×n, where each
integer i ∈ {1, . . . , n} appears exactly k times, and the two successive
occurrences of i are separated by a distance of i
We consider here only the case for k = 2

Langford Sequence (n = 7)

7 3 6 2 5 3 2 4 7 6 5 1 4 1
7 1

4

Constraint Programming 39 / 41

Global Constraints gcc

Alice and Bob are Going to Work

Description

Alice goes to work by car (30 to 40 minutes) or by bus (at least 60
min)

Bob goes by bike (40 or 50 min) or by motorbike (20 to 30 min)

This morning:

Alice left her house between 7:10 AM and 7:20 AM
Bob arrived at work between 8:00 AM and 8:10 AM
Alice arrived 10 to 20 minutes after Bob left

1 Model this problem

2 Is the story consistent?

3 When did Bob leave? Is it possible that he took his bike?
4 Is the story consistent if we add that:

Alice’s car is broken down
Alice and Bob met on the way

Constraint Programming 40 / 41

Global Constraints gcc

Binairo – 2018 Exam

Description

A Belgian game, based on a square grid with only the digits 0 and 1. On
each row and each column:

there are as many 0’s as 1’s

there cannot be more than 2 identical digits next to each other

No two rows or columns can be identical.

Example Grid

0 1 0

1 0 1

1 0 0 1

1

1 1

Constraint Programming 41 / 41

Bibliography

Beldiceanu, N., Carlsson, M., and Rampon, J.-X. (2010).

Global constraint catalog, 2nd edition.
Technical Report T2010:07, The Swedish Institute of Computer Science.

Bessière, C. (1994).

Arc-consistency and arc-consistency again.
Artificial Intelligence, 65(1):179–190.

Bessière, C., Freuder, E. C., and Régin, J.-C. (1999).

Using constraint metaknowledge to reduce arc consistency computation.
Artificial Intelligence, 107(1):125–148.

Bessière, C. and Régin, J.-C. (1996).

Mac and combined heuristics: Two reasons to forsake fc (and cbj?) on hard problems.
In Proceedings of the Second International Conference on Principles and Practice of Constraint Programming, volume
1118 of Lecture Notes in Computer Science. Springer.

Bessière, C. and Régin, J.-C. (2001).

Refining the basic constraint propagation algorithm.
In Proceedings of the 17th International Joint Conference on Artificial intelligence (IJCAI’01), pages 309–315. Morgan
Kaufmann.

Boussemart, F., Hemery, F., Lecoutre, C., and Sais, L. (2004).

Boosting systematic search by weighting constraints.
In Proceedings of the 16th Eureopean Conference on Artificial Intelligence, (ECAI’2004), pages 146–150. IOS Press.

Brélaz, D. (1979).

New methods to color the vertices of a graph.
Communications of the ACM, 22(4):251–256.

Costa, M.-C. (1994).

Persistency in maximum cardinality bipartite matchings.
Operations Research Letters, 15(3):143–149.

Haralick, R. M. and Elliott, G. L. (1979).

Constraint Programming 41 / 41

Bibliography

Increasing tree search efficiency for constraint satisfaction problems.
In Proceedings of the 6th International Joint Conference on Artificial intelligence (IJCAI’79), pages 356–364. Morgan
Kaufmann Publishers Inc.

Hopcroft, J. E. and Karp, R. M. (1973).

An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231.

Katriel, I. and Thiel, S. (2003).

Fast bound consistency for the global cardinality constraint.
In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP’03),
volume 2833 of Lecture Notes in Computer Science, pages 437–451. Springer Berlin / Heidelberg.

Lauriere, J.-L. (1978).

A language and a program for stating and solving combinatorial problems.
Artificial Intelligence, 10(1):29 – 127.

Lecoutre, C., Boussemart, F., and Hemery, F. (2003).

Exploiting multidirectionality in coarse-grained arc consistency algorithms.
In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP’03),
volume 2833 of Lecture Notes in Computer Science, pages 480–494. Springer.

Lopez-Ortiz, A., Quimper, C.-G., Tromp, J., and Beek, P. V. (2003).

A fast and simple algorithm for bounds consistency of the all different constraint.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pages 245–250.

Mackworth, A. K. (1977a).

Consistency in networks of relations.
Artificial Intelligence, 8(1):99–118.

Mackworth, A. K. (1977b).

On reading sketch maps.
In Proceedings of the 5th International Joint Conference on Artificial Intelligence, pages 598–606.

Mehlhorn, K. and Thiel, S. (2000).

Constraint Programming 41 / 41

Bibliography

Faster algorithms for bound-consistency of the sortedness and the alldifferent constraint.
In Proceedings of the 6th International Conference on Principles and Practice of Constraint Programming (CP ’00),
volume 1894 of Lecture Notes in Computer Science, pages 306–319. Springer.

Mohr, R. and Henderson, T. C. (1986).

Arc and path consistency revisited.
Artificial Intelligence, 28(2):225–233.

Montanari, U. (1974).

Networks of constraints: Fundamental properties and applications to picture processing.
Information Science, 7(2):95–132.

Oplobedu, A., Marcovitch, J., and Tourbier, Y. (1989).

Charme: Un langage industriel de programmation par contraintes, illustré par une application chez renault.
In Proceedings of the Ninth International Workshop on Expert Systems and their Applications: General Conference,
pages 155–70.

Puget, J.-F. (1998).

A fast algorithm for the bound consistency of alldiff constraints.
In Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative applications of artificial
intelligence (AAAI ’98/IAAI ’98), pages 359–366. American Association for Artificial Intelligence.

Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., and Sadjad, S. (2003).

An efficient bounds consistency algorithm for the global cardinality constraint.
In Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP’03),
volume 2833 of Lecture Notes in Computer Science, pages 600–614. Springer Berlin / Heidelberg.

Régin, J.-C. (1994).

A filtering algorithm for constraints of difference in csps.
In Proceedings of the 12th National Conference on Artificial Intelligence (Vol. 1), pages 362–367.

Régin, J.-C. (1996).

Generalized arc consistency for global cardinality constraint.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-96), pages 209–215.

Constraint Programming 41 / 41

Global Constraints gcc

Tarjan, R. (1972).

Depth-first search and linear graph algorithms.
SIAM Journal on Computing, 1(2):146–160.

van Hentenryck, P., Deville, Y., and Teng, C.-M. (1992).

A generic arc-consistency algorithm and its specializations.
Artificial Intelligence, 57.

van Hentenryck, P., Saraswat, V. A., and Deville, Y. (1995).

Design, implementation, and evaluation of the constraint language cc(fd).
In Selected Papers from Constraint Programming: Basics and Trends, pages 293–316. Springer-Verlag.

Constraint Programming 41 / 41

	Greedy Algorithm
	Local Search
	Constraint Programming
	Solving method
	Generate and Test
	Forward Checking
	Method with Filtering
	Maintaining Generalized Arc Consistency

	Search Strategy
	dom
	deg
	Limits

	Global Constraints
	alldifferent
	gcc

	Bibliography

