
Problem Solving
Local Search

Marie Pelleau
marie.pelleau@univ-cotedazur.fr

Local Search 1 / 25

Greedy Algorithm

Greedy Algorithm

Principle

At each step, a choice is made, the one that seems the best at that
moment

Builds a solution step by step

without revisiting previous decisions
by making at each step the choice that seems the best
hoping to achieve a global optimal result

Greedy approach

depending on the problem, no guarantee of optimality (greedy heuristic)
low cost (compared to exhaustive enumeration)
intuitive choice

Local Search 2 / 25

Notes

Notes

mailto:marie.pelleau@univ-cotedazur.fr
marie.pelleau@univ-cotedazur.fr


Local Search

Local Search

Principle

Start from an initial solution

At each step, modify the solution

trying to improve the value of the objective function
hoping to achieve the global optimum

Local approach

depending on the problem, no guarantee of optimality (heuristic)
low cost

Initial solution

“Empty” solution

Random solution

Solution from a greedy algorithm

Local Search 3 / 25

Local Search

Local Search

Principle

Start from an initial solution

At each step, modify the solution

trying to improve the value of the objective function
hoping to achieve the global optimum

Local approach

depending on the problem, no guarantee of optimality (heuristic)
low cost

Modifications

Modify the value of a variable

Swap the values of two variables

Local Search 3 / 25

Notes

Notes



Local Search

Knapsack Problem

Description

You have:

A backpack with a weight limit

A set of objects, each object oi has

A weight: wi

A value: vi

Which objects should be taken to maximize the total value carried while
respecting the weight constraint?

The total value of the selected objects is maximized

The total weight of the selected objects is less than or equal to the
backpack’s weight limit

Local Search 4 / 25

Local Search

Knapsack Problem

Variables

We associate each item with a 0-1 variable (it only takes values 0 or
1)

It is a membership variable for the backpack

If the item is taken, the variable is 1, otherwise it is 0

Model

The value and weight of an item are given data, so for item oi , we
have the value vi and the weight wi

The membership variable for the backpack is xi

The maximum weight of the backpack is W

Local Search 5 / 25

Notes

Notes



Local Search

Knapsack Problem

Constraints

max
∑n

i=1 vixi the objective∑n
i=1 wixi ≤W sum of weights less than or equal to the maximum weight

Local Search 6 / 25

Local Search

Knapsack

Initial solution

“Empty” solution: empty knapsack ⇒ objective function 0

Random solution : random backpack ⇒ must be verified as a solution

Solution of a greedy algorithm

Modifications

Add an item to the backpack ⇒ if max capacity is not exceeded

Deletes an item from the backpack

Local Search 7 / 25

Notes

Notes



Local Search

Hitting-set: Set cover

Description

A switch is connected to some bulbs

When a switch is pressed, all connected bulbs are turned on

Question: What is the minimum number of switches needed to turn
on all bulbs?

Local Search 8 / 25

Local Search

Hitting-set: Set cover

Initial solution

“Empty” solution: all switches on ⇒ objective function number of
switches

Random solution: random switch positions ⇒ must be verified as a
solution

Solution of a greedy algorithm

Modifications

Turn on a switch

Turns off a switch ⇒ if all bulbs remain on

Local Search 9 / 25

Notes

Notes



Local Search

TSP

Solution initiale

Cities in alphabetical order

Cities in random order

Solution of a greedy
algorithm

Local Search 10 / 25

Local Search

TSP

Solution initiale

Cities in alphabetical order

Cities in random order

Solution of a greedy
algorithm

Local Search 10 / 25

Notes

Notes



Local Search

TSP

Solution initiale

Cities in alphabetical order

Cities in random order

Solution of a greedy
algorithm

Local Search 10 / 25

Local Search

TSP

Modifications

k-opt

k = 2
k = 3

Local Search 11 / 25

Notes

Notes



Local Search

TSP

Modifications

k-opt

k = 2
k = 3

Local Search 11 / 25

Local Search

TSP

Modifications

k-opt

k = 2
k = 3

Local Search 11 / 25

Notes

Notes



Local Search

TSP

Modifications

k-opt

k = 2
k = 3

Local Search 11 / 25

Local Search

Local search

Principle

We start with an initial solution

At each step, we modify the solution ⇒ notion of neighborhood

Neighborhood

For a solution, the set of solutions with one modification

Local Search 12 / 25

Notes

Notes



Local Search

Hitting-set: Set cover

Neighborhood

Local Search 13 / 25

Local Search

Hitting-set: Set cover

Neighborhood

Local Search 14 / 25

Notes

Notes



Local Search

Local search

Principle

We start with an initial solution

At each step, we modify the solution ⇒ notion of neighborhood

Which neighbor to choose?

Randomly

The best

One of the best

Local Search 15 / 25

Local Search

Contents

1 Random walk

2 Gradient descent

3 Restarts

4 Tabu Search

5 Constraint Based Local Search

Local Search 16 / 25

Notes

Notes



Random walk

Random walk

Principle

We start with an initial solution

At each step, the solution is randomly modified

Local Search 17 / 25

Gradient descent

Gradient descent

Principle

We start with an initial solution

At each step, we move towards a solution in the neighborhood
strictly improving the objective

Drawbacks

You can get stuck in local minima

Restarts

Start again from another solution

Local Search 18 / 25

Notes

Notes



Gradient descent

Gradient descent

Principle

We start with an initial solution

At each step, we move towards a solution in the neighborhood
strictly improving the objective

Restarts

Start again from another solution

Local Search 18 / 25

Restarts

Local search

Restarts

Random solution

“Empty” solution, in which a certain percentage of variables is fixed
as in the best solution found so far

5%, 10%, 20%

Large Neighborhood Search (LNS) [Shaw, 1998]

No improvement

We move towards a solution in the neighborhood without improving
the objective
emph⇒ Don’t be a goldfish

Local Search 19 / 25

Notes

Notes



Tabu Search

Tabu Search [Glover, 1986]

Principle

We start from a solution s.

We move towards the best solution in the neighbourhood which is
not forbidden

Add s to the forbidden solutions for the next m iterations

Memory

Prohibiting solutions can be memory-intensive

Instead we forbid movements

Aspiration criterion

A tabu movement can be accepted if it leads to a better solution than the
best solution known so far

Local Search 20 / 25

Tabu Search

Size of tabu list

If m too small, intensification too strong ⇒ blocking search around
a local optimum

If m too large, diversification too strong ⇒ risk of missing solutions

Optimal list length varies

from one problem to another

from one instance to another of the same problem

during the resolution of the same instance

[Battiti, Protasi 2001]: adapt this length dynamically

Need for diversification ⇒ increase m

Need for intensification ⇒ decrease m

Local Search 21 / 25

Notes

Notes



Local search

Local search

Principle

We start with an initial solution

At each step, we modify the solution

trying to improve the value of the objective function
in the hope of obtaining the global optimum

Local approach

depending on the problem no guarantee of optimality (heuristic)
low-cost

Note

This assumes the existence of an objective function

What if there isn’t one?

Local Search 22 / 25

Constraint Based Local Search

Constraint Based Local Search

Principle

Given a problem of the form

V = {v1, . . . , vn}: variables
D = {D1, . . . ,Dn}: domains
C = {C1, . . . ,Cp}: constraints

Objective function to minimize: number of unsatisfied constraints

Intuition

Search guided by problem structure

constraints give structure to the problem and variables link them
together

any type of constraint can be used

Local Search 23 / 25

Notes

Notes



Constraint Based Local Search

Constraint Based Local Search

N-queens

on a n × n chessboard

Placer n queens so that no queen can capture another one

Formulation

li : queen’s column on line i

li 6= lj

li + i 6= lj + j (upward diagonal)

li − i 6= lj − j (downward diagonal)

Objective function

Number of unsatisfied constraints

Local Search 24 / 25

Constraint Based Local Search

Constraint Based Local Search

Example

Q

Q

Q

Q

Q

Q

Q

Q

Objective function: 5

Local Search 25 / 25

Notes

Notes



Constraint Based Local Search

Constraint Based Local Search

Example

Q

Q

Q

Q

Q

Q

Q

Q

Objective function: 5

Objective function: 3

Local Search 25 / 25

Constraint Based Local Search

Constraint Based Local Search

Example

Q

Q

Q

Q

Q

Q

Q

Q

Objective function: 5

Objective function: 1

Local Search 25 / 25

Notes

Notes



Constraint Based Local Search

Constraint Based Local Search

Example

Q

Q

Q

Q

Q

Q

Q

Q

Objective function: 5

Objective function: 0

Local Search 25 / 25

Notes

Notes


	Greedy Algorithm
	Local Search
	Random walk
	Gradient descent
	Restarts
	Tabu Search
	Local search
	Constraint Based Local Search

