Problem Statement

Problem Representation

Google Hash Code

Self-driving rides

Hash Code 2018, Online Qualification Round

Problem Statement

Problem Representation

- *R*, *C* number of rows and columns in the grid
- *F* size of the fleet (number of vehicles)
- N number of rides
 - $\forall r \in [1, N], s_r, f_r$: starting and ending points of the ride
 - $\forall r \in [1, N], e_r, l_r$: earliest start time and latest end time of the ride
- *B* bonus for rides that start on time
- T time horizon
- Score for a ride: distance of the ride plus a potential bonus if it starts on time

Hash Code 2018

Objective: Maximize the score for all completed rides

Example

Hash Code 2018

Hash Code 2018

2/10

s

Online Qualification Round

2/10

Exemple

- Grid with 3 rows and 4 columns
- 2 vehicles
- 3 rides
 - $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
 - $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$
- Bonus: 2
- Time horizon: 15 time steps

Variables?

- The rides assigned to the vehicles
 - $\forall v \in [0, F-1], L_v$: the list of rides assigned to vehicle v

Hash Code 2018

Online Qualification Round 4/10

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

Hash Code 2018

Iow cost

Initial solution

- "Empty" solution
- Random solution
- Solution from a greedy algorithm

Online Qualification Round

3/10

5/10

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

Iow cost

Modifications

- Add a ride to a vehicle
- Remove a ride from a vehicle
- Swap rides within a vehicle
- Swap rides between 2 vehicles

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

Hash Code 2018

low cost

Improving the score

Need for a function computing the score

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

- Iow cost
- Random walk
- Q Gradient descent
- Tabu Search

Self-driving rides

Online Qualification Round 5 / 10

Local Search

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- Grid of 3 rows and 4 columns
- 2 vehicles
- Bonus of 2
- Time horizon of 15 time steps
- 3 rides
- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

Local Search

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

$L_0 = [], L_1 = []$

Hash Code 2018

Online Qualification Round

5/10

6/10

score : 0

Local Search

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

$L_0 = [0], L_2$

$L_0 = [0], L_1$	1 = []		score: 4
$L_0 = []$	(0, (0, 0))	$L_1 = [] (0, (0, 0))$	score: 0
$L_0 = []$	(0, (0, 0))	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [0, 1]$	(7, (0, 1))	$L_1 = [] (0, (0, 0))$	score: б
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1]$ (6, (0, 1))	score: 8
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$	(4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Online Qualification Round

6/10

8/10

Local search

Restarts

- Random solution
- "Empty" solution, in which a certain percentage of variables is fixed as in the best solution found so far

Hash Code 2018

• 5%, 10%, 20%

No improvement

• We move towards a solution in the neighborhood without improving the objective

Hash Code 2018

 \Rightarrow Don't be a goldfish

Local search

Which neighbor to choose?

- Randomly
- The best
- One of the best

Gradient descent

- We start with an initial solution
- At each step, we move towards a solution in the neighborhood strictly improving the objective

Hash Code 2018

- You can get stuck in local minima
- \Rightarrow Start again from another solution

Online Qualification Round

Tabu Search

Principle

- We start from a solution s.
- We move towards the best solution in the neighbourhood which is not forbidden
- Add s to the forbidden solutions for the next m iterations

Memory

- Prohibiting solutions can be memory-intensive
- Instead we forbid movements
 - If m too small \Rightarrow blocking search around a local optimum
 - If *m* too large \Rightarrow risk of missing solutions

7/10

$L_0 = [], L_1 = []$		score: 0
t = []		
$L_0 = [0] (4, (2, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [1]$ (6, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = \llbracket 1 rbracket$ (6, (0, 1))	score: 4
$L_0 = [2] (5, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [2] (5, (3, 2))$	score: 4

Hash Code 2018

Tabu	Search
<i>m</i> = 3	

$L_0 = [0], L_1 = []$ t = [del 0]		score: 4
$L_0 = [0]$ (4, (2, 2))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [0] (4, (2, 2))$	score: 4
$L_0 = [1]$ (6, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [1]$ (6, (0, 1))	score: 4
$L_0 = [2]$ (5, (3, 2))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [2] (5, (3, 2))$	score: 4

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10
Tabu Search			

$L_0 = [0](4, (2, 2)), L_1$	= [](0,(0,0))	score: 4
t = [del 0]		
$L_0 = []$ (0, (0, 0))	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [0,1]$ (7, (0, 1))	$L_1 = []$ (0, (0, 0))	score: б
$L_0 = [0]$ (4, (2, 2))	$L_1 = [1]$ (6, (0, 1))	score: 8
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Hash Code 2018

$L_0 = [0](4, (2, 2)), L_1 = [2](5, (3))$	3,2)) score: 8
t = [del 0, <mark>del 2</mark>]	
$L_0 = []$ (0, (0, 0)) $L_1 = [0]$	(4, (2, 2)) score: 4
$L_0 = [0,1]$ (7, (0, 1)) $L_1 = []$	(0, (0, 0)) score: 6
$L_0 = [0]$ (4, (2, 2)) $L_1 = [1]$	(6, (0, 1)) score: 8
$L_0 = [0, 2]$ (11, (3, 2)) $L_1 = []$	(0, (0, 0)) score: 8
$L_0 = [0]$ (4, (2, 2)) $L_1 = [2]$	(5, (3, 2)) score: 8

Self-driving rides

Tabu Search

m = 3

Online Qualification Round 10 / 10

 $L_0 = []$ (0, (0, 0)) $L_1 = [2, 0]$ (10, (2, 2))

 $L_0 = [0, 2] (11, (3, 2))$ $L_1 = [] (0, (0, 0))$

 $L_0 = [0, 1]$ (7, (0, 1)) $L_1 = [2]$ (5, (3, 2))

 $L_0 = [0]$ (4, (2, 2)) $L_1 = [2, 1]$ (9, (0, 1))

Tabu	Search
<i>m</i> = 3	

$L_0 = [0, 1](7, (0, 1)), L_0$	$L_1 = [2](5, (3, 2))$	score: 10
t = [del 0, del 2, del	1]	
$L_0 = []$ (0, (0, 0))	$L_1 = [2,0] (10, (2, 2))$	score: 6
$L_0 = [0, 2]$ (11, (3, 2))	$L_1 = []$ (0, (0, 0))	score: 8
$L_0 = [0,1]$ (7, (0, 1))	$L_1 = [2]$ (5, (3, 2))	score: 10
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2,1]$ (9, (0, 1))	score: 10

Self-driving rides Hash Code 2018 Online Qualification Round 10 / 10	Self-driving rides	Hash Code	2018 Online	Qualification Round
labu Search	labu Search			
n = 3	n = 3			

score: 8

score: 6

score: 8

score: 10

score: 10

$L_0 = [0, 1](7)$	$(0,1)), L_1$	= [2](5, (3	,2))	score: 10	
t = [del 0, d	el 2, del 1]				
$L_0 = [1, 0]$	(9, (2, 2))	$L_1 = [2]$	(5, (3, 2))	score: 10	
$L_0 = [1]$	(6, (0, 1))	$L_1 = [2, 0]$	(10, (2, 2))	score: 10	
$L_0 = [0]$	(4, (2, 2))	$L_1 = [2, 1]$	(9, (0, 1))	score: 10	
$L_0 = [0, 1, 2]$	(13, (3, 2))	$L_1 = []$	(0, (0, 0))	score: 10	

Hash Code 2018

$L_0 = [0](4, (2, 2)), L_1 = [2, 1](9, (0, 1))$	L)) score: 10
t = [del 2, del 1, swap 1]	
$L_0 = [1,0]$ (9, (2, 2)) $L_1 = [2]$	(5, (3, 2)) score: 10
$L_0 = [1]$ (6, (0, 1)) $L_1 = [2, 0]$ (10, (2, 2)) score: 10
$L_0 = [0]$ (4, (2, 2)) $L_1 = [2, 1]$	(9, (0, 1)) score: 10
$L_0 = [0, 1, 2]$ (13, (3, 2)) $L_1 = []$	(0, (0, 0)) score: 10

Hash Code 2018

Tabu Search	ı
<i>m</i> = 3	

$L_0 = [0](4,$	$(2,2)), L_1$	= [1, 2](12, (3,2))	score: 12
$\iota = [der I]$	swap I, SM	ap z		
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1]$	(9, (0, 1))	score: 6
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1, 0]$	(12, (2, 2))	score: 8
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1, 2]$	(12, (3, 2))	score: 12
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [1]$	(6, (0, 1))	score: 12

Online Qualification Round 10 / 10

$L_0 = [0](4, t) = [0](4, t)$	$(2,2)), L_1$	= [2, 1](9, (0,1))	score: 10
$\iota = [uei \ z,$	uer I, Swap	ן די		
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1]$	(9, (0, 1))	score: 6
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1, 0]$	0] (12, (2, 2))	score: 8
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1, 2]$	(12, (3, 2))	score: 12
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [1]$	(6, (0, 1))	score: 12

Tabu Search	Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10	Self-driving rides
Tabu Search					
abu Search					
Tabu Search					
abu Search					
abu Search					
	abu Search				
	n-3				

$L_0 = [0](4, (2, 2)), L_1 = [1, 2](12, (3, 2))$	score: 12	
t = [del 1, swap 1, swap 2]		
$L_0 = []$ (0, (0, 0)) $L_1 = [1, 2]$ (12, (3, 2))	score: 8	
$L_0 = [0]$ (4, (2, 2)) $L_1 = [1]$ (6, (0, 1))	score: 8	
$L_0 = []$ (4, (2, 2)) $L_1 = [1, 2, 0]$ (12, (3, 2))	score: 8	