	Notes
Google Hash Code	
Self-driving rides	
Hash Code 2018, Online Qualification Round	
Self-driving rides Hash Code 2018 Online Qualification Round 1/10	
Problem Statement	Notes
Problem Representation	
Self-driving rides Hash Code 2018 Online Qualification Round 2/10	

Problem Statement

Notes

Problem Representation

- *R*, *C* number of rows and columns in the grid
- F size of the fleet (number of vehicles)
- *N* number of rides
 - $\forall r \in [1, N], s_r, f_r$: starting and ending points of the ride
 - $\forall r \in [1, N], e_r, l_r$: earliest start time and latest end time of the ride
- *B* bonus for rides that start on time
- T time horizon
- Score for a ride: distance of the ride plus a potential bonus if it starts on time

Hash Code 2018

Objective: Maximize the score for all completed rides

Self	-drivin	a ride

Online Qualification Round 2 / 10

Example

Exemple T = 15B = 22 0 - - - $e_0 = 2$ $l_0 = 14$ 1 -- - 0 $e_1 = 4$ $l_1 = 14$ $e_2 = 0$ ず 0 0 $l_2 = 14$ 2 3 0 1

Hash Code 2018

Notes

Exemple

- Grid with 3 rows and 4 columns
- 2 vehicles
- 3 rides
 - $s_0 = (0,2), f_0 = (2,2), e_0 = 2, l_0 = 14$
 - $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$
- Bonus: 2
- Time horizon: 15 time steps

Self-driving rides	Hash Code 2018	Online Qualification Round	3 / 10
Problem Statement			

Variables?

- The rides assigned to the vehicles
 - $\forall v \in [0, F-1], L_v$: the list of rides assigned to vehicle v

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

Iow cost

Initial solution

- "Empty" solution
- Random solution
- Solution from a greedy algorithm

Se	lf-d	riving	, ride	
			5	

Online Qualification Round

5/10

5/10

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

Iow cost

Modifications

- Add a ride to a vehicle
- Remove a ride from a vehicle
- Swap rides within a vehicle
- Swap rides between 2 vehicles

Notes

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)

Hash Code 2018

low cost

Improving the score

Need for a function computing the score

Self-driving rides	

Online Qualification Round 5 / 10

Notes

Notes

Local Search

Principle

- Start from an initial solution
- At each step, modify the solution
 - trying to improve the value of the objective function
 - hoping to achieve the global optimum
- Local approach
 - depending on the problem, no guarantee of optimality (heuristic)
 - Iow cost
- Random walk
- **Q** Gradient descent
- I Tabu Search

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- Grid of 3 rows and 4 columns
- 2 vehicles
- Bonus of 2
- Time horizon of 15 time steps
- 3 rides
- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

```
elf-driving rides
```

Online Qualification Round 6 / 10

Local Search

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

$L_0 = [], L_1 = []$		score : 0
$L_0 = [0]$ (4, (2, 2))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [1]$ (6, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [1]$ (6, (0, 1))	score: 4
$L_0 = [2] (5, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [2]$ (5, (3, 2))	score: 4

Hash Code 2018

Hash Code 2018

6/10

Notes

Neighborhood

For a solution, the set of solutions with one modification

Exemple

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14$
- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$

$L_0 = [0], L_1 = []$		score: 4
$L_0 = []$ (0, (0, 0))	$L_1 = [] (0, (0, 0))$	score: 0
$L_0 = []$ (0, (0, 0))	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [0,1]$ (7, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 6
$L_0 = [0]$ (4, (2, 2))	$L_1 = [1]$ (6, (0, 1))	score: 8
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2]$ (5, (3, 2))	score: 8

Hash Code 2018

elf-driving rides

Online Qualification Round

6/10

Local search

Which neighbor to choose?

- Randomly
- The best
- One of the best

Gradient descent

- We start with an initial solution
- At each step, we move towards a solution in the neighborhood **strictly improving** the objective
- You can get stuck in local minima
- $\Rightarrow\,$ Start again from another solution

Notes

Restarts

- Random solution
- "Empty" solution, in which a certain percentage of variables is fixed as in the best solution found so far
 - 5%, 10%, 20%

No improvement

• We move towards a solution in the neighborhood without improving the objective

Hash Code 2018

 \Rightarrow Don't be a goldfish

C _ I	£	riving	and and and

Online Qualification Round

8/10

Tabu Search

Principle

- We start from a solution s.
- We move towards **the best** solution in the neighbourhood which is not **forbidden**
- Add s to the forbidden solutions for the next m iterations

Memory

- Prohibiting solutions can be memory-intensive
- Instead we forbid movements
 - If m too small \Rightarrow blocking search around a local optimum
 - If m too large \Rightarrow risk of missing solutions

$L_0 = [], L_1 = []$ t = []		score: 0
$L_0 = [0] (4, (2, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [1]$ (6, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = \llbracket 1 rbracket$ (6, (0, 1))	score: 4
$L_0 = [2] (5, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [2] (5, (3, 2))$	score: 4

Hash Code 2018	Online Qualification Round	10 / 10
	Hash Code 2018	Hash Code 2018 Online Qualification Round

$L_0 = [0], L_1 = []$ t = [del 0]		score: 4
$L_0 = [0] (4, (2, 2))$	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [1]$ (6, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [1]$ (6, (0, 1))	score: 4
$L_0 = [2]$ (5, (3, 2))	$L_1 = [] (0, (0, 0))$	score: 4
$L_0 = [] (0, (0, 0))$	$L_1 = [2] (5, (3, 2))$	score: 4

$L_0 = [0](4, (2, 2)), L_1$	= [](0,(0,0))	score: 4
t = [del 0]		
$L_0 = []$ (0, (0, 0))	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [0,1]$ (7, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 6
$L_0 = [0]$ (4, (2, 2))	$L_1 = \llbracket 1 rbracket$ (6, (0, 1))	score: 8
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10
Tabu Search			
m = 3			

$L_0 = [0](4, (2, 2)), L_1$ t = [del 0, del 2]	= [2](5,(3,2))	score: 8
$L_0 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ (0, (0, 0))	$L_1 = [0]$ (4, (2, 2))	score: 4
$L_0 = [0, 1]$ (7, (0, 1))	$L_1 = [] (0, (0, 0))$	score: 6
$L_0 = [0]$ (4, (2, 2))	$L_1 = [1]$ (6, (0, 1))	score: 8
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2] (5, (3, 2))$	score: 8

Hash Code 2018

$L_0 = [0](4, (2, 2)), L_1$	= [2](5, (3, 2))	score: 8
t = [del 0, del 2]		
$L_0 = []$ (0, (0, 0))	$L_1 = [2,0]$ (10, (2, 2))	score: 6
$L_0 = [0, 2] (11, (3, 2))$	$L_1 = []$ (0, (0, 0))	score: 8
$L_0 = [0,1]$ (7, (0, 1))	$L_1 = [2]$ (5, (3, 2))	score: 10
$L_0 = [0]$ (4, (2, 2))	$L_1 = [2,1]$ (9, (0, 1))	score: 10

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10
Tabu Search $m = 3$			

$L_0 = [0, 1](7, (0, 1)), L_1 = [2](5, (3, 2))$	score: 10
t = [del 0, del 2, del 1]	
$L_0 = []$ (0, (0, 0)) $L_1 = [2, 0]$ (10, (2, 2))	score: б
$L_0 = [0, 2] (11, (3, 2))$ $L_1 = [] (0, (0, 0))$	score: 8
$L_0 = [0,1]$ (7, (0, 1)) $L_1 = [2]$ (5, (3, 2))	score: 10
$L_0 = [0]$ (4, (2, 2)) $L_1 = [2, 1]$ (9, (0, 1))	score: 10

$L_0 = [0, 1](7, (0,$	$1)), L_1 = [2](5, (3, 2))$	score: 10
t = [del 0, del 2	, del 1]	
$L_0 = [1, 0]$ (9,	$L_1 = [2]$ (5, (3, 2))	score: 10
$L_0 = [1]$ (6,	, (0, 1)) $L_1 = [2, 0]$ (10, (2, 2))	score: 10
$L_0 = [0] \qquad (4,$	$(2, 2)) L_1 = [2, 1] (9, (0, 1))$	score: 10
$L_0 = [0, 1, 2]$ (13,	, (3, 2)) $L_1 = []$ (0, (0, 0))	score: 10

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10
тьсь			
Tabu Search			
m = 3			
<i>m</i> = 3			

$L_0 = [0](4, (2, 2)), L_1 = [2, 1](9, (0, 1))$ t = [del 2, del 1, swap 1]			score:	10	
$L_0 = [1, 0]$	(9, (2, 2))	$L_1 = [2]$	(5, (3, 2))	score: 2	10
$L_0 = [1]$	(6, (0, 1))	$L_1 = [2, 0]$	(10, (2, 2))	score: 2	10
$L_0 = [0]$	(4, (2, 2))	$L_1 = [2, 1]$	(9, (0, 1))	score:	10
$L_0 = [0, 1, 2]$	(13, (3, 2))	$L_1 = []$	(0, (0, 0))	score:	10

	ng	

Notes

$L_0 = [0](4$	$, (2, 2)), L_1$	= [2, 1](9, (0	0,1))	score: 10
t = [del 2,	del 1, swar	o 1]		
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1]$	(9, (0, 1))	score: 6
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1, 0]$)] (12, (2, 2))	score: 8
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1, 2]$	(12, (3, 2))	score: 12
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [1]$	(6, (0, 1))	score: 12

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10
ТІСІ			
Tabu Search			
m = 3			
···· — 5			

	, <mark>(2, 2)</mark>), <i>L</i> ₁ swap 1, sw	= [1,2](12, vap 2]	(3,2))	score: 12
-			(9, (0, 1))	score: 6
$L_0 = []$	(0, (0, 0))	$L_1 = [2, 1, $	0] (12, (2, 2))	score: 8
$L_0 = [0]$	(4, (2, 2))	$L_1 = [1, 2]$	(12, (3, 2))	score: 12
$L_0 = [0, 2]$	(11, (3, 2))	$L_1 = [1]$	(6, (0, 1))	score: 12

t_c	riv/ir	ng rid	ec

Se

$L_0 = [0](4, (2, 2)), L_1 = [1, 2](12, (3, 2))$	score: 12
$t = [del \ 1, \ swap \ 1, \ swap \ 2]$	
$L_0 = [] (0, (0, 0)) L_1 = [1, 2] (12, (3, 2))$	score: 8
$L_0 = [0]$ (4, (2, 2)) $L_1 = [1]$ (6, (0, 1))	score: 8
$L_0 = []$ (4, (2, 2)) $L_1 = [1, 2, 0]$ (12, (3, 2))	score: 8
$L_0 = \begin{bmatrix} 0 \end{bmatrix} (4, (2, 2)) L_1 = \begin{bmatrix} 1 \end{bmatrix} (6, (0, 1))$	score: 8

Self-driving rides	Hash Code 2018	Online Qualification Round	10 / 10