
Problem Solving
Greedy Algorithm

Marie Pelleau
marie.pelleau@univ-cotedazur.fr

Greedy Algorithms 1 / 21

mailto:marie.pelleau@univ-cotedazur.fr
marie.pelleau@univ-cotedazur.fr


Greedy Algorithm

Definition

A greedy algorithm is an algorithm that follows the principle of
making a locally optimal choice at each step, with the hope of
reaching a globally optimal result

In cases where the algorithm does not always provide the optimal
solution, it is called a greedy heuristic

The method used to make the choice is sometimes referred to as a
greedy strategy

Greedy Algorithms 2 / 21



Greedy Algorithm

Change with the Fewest Coins

Greedy strategy: At each step, return the coin with the largest value that
is smaller than the remaining amount to be returned

To return 37 cents

The largest coin is 20, so return 20, and 17 cents remain

The largest coin is 10, so return 10, and 7 cents remain

The largest coin is 5, so return 5, and 2 cents remain

Return 2

Thus, you have returned 20+10+5+2

In the European coin system, the greedy algorithm always gives an
optimal solution

However, in the coin system (1, 3, 4), the greedy algorithm is not
optimal (for 6: it gives 4+1+1, while 3+3 is optimal)

Greedy Algorithms 3 / 21



Greedy Algorithm

Principle: be efficient

Difficulty: finding the good strategy, or an efficient one

Greedy Algorithms 4 / 21



Knapsack Problem

Description

You have:

A backpack with a weight limit

A set of objects, each object oi has:

A weight: pi
A value: vi

Which objects should be taken to maximize the total value carried while
respecting the weight constraint?

The total value of the selected objects is maximized

The total weight of the selected objects is less than or equal to the
backpack’s weight limit

Greedy Algorithms 5 / 21



Knapsack Problem

You have bags of precious metals oi and you can take as much as you
want, but no more than pi

For each bag, calculate the value per gram

1 Take the bag with the highest value per gram and fill the backpack
with as much of that bag as possible

2 If the weight limit of the backpack is reached, stop

3 Otherwise, take the entire content of the bag, eliminate that bag, and
repeat step 1

This strategy is optimal

Greedy Algorithms 6 / 21



Knapsack Problem

Optimality Proof

Define the efficiency of an object oi : as the value per gram

Suppose there is an optimal solution that does not take one gram of
an object oi but does take one gram of an object ok with lower
efficiency than oi

By replacing 1g of ok with 1g of oi the solution improves

⇒ Contradiction

Greedy Algorithms 7 / 21



Knapsack Problem

Putting bags of precious metal powder is equivalent to accepting
cutting objects

If we can’t cut objects, what do we do?

The problem becomes difficult

We proceed ”as if”

We calculate the efficiency and select the objects based on their
efficiency while respecting the weight constraint

Greedy Algorithms 8 / 21



Knapsack Problem

Example

We have a backpack with a maximum capacity of 15kg and the following
items:

o1 of value 10 and weight 9kg

o2 of value 7 and weight 12kg

o3 of value 1 and weight 2kg

o4 of value 3 and weight 7kg

o5 of value 2 and weight 5kg

Greedy Algorithms 9 / 21



Knapsack Problem

Modelization

How do we represent this problem?

What are the variables (the unknowns)?

How do we express the constraints?

This is the modelization: the mathematical representation of the problem

Greedy Algorithms 10 / 21



Knapsack Problem

Variables

We associate each item with a 0-1 variable (it only takes values 0 or
1)

It is a membership variable for the backpack

If the item is taken, the variable is 1, otherwise it is 0

Model

The value and weight of an item are given data, so for item oi , we
have the value vi and the weight pi

The membership variable for the backpack is xi

The maximum weight of the backpack is W

Greedy Algorithms 11 / 21



Knapsack Problem

Constraints

max
∑n

i=1 vixi the objective∑n
i=1 pixi ≤W sum of weights less than or equal to the maximum weight

Greedy Algorithms 12 / 21



Heuristic

When the greedy algorithm does not always give an optimal solution, it is
called a heuristic method

It comes from the ancient Greek eurisko, meaning ”I find”

A heuristic is an algorithm that quickly (in polynomial time) provides
a feasible solution, not necessarily optimal, for an NP-hard
optimization problem

A heuristic is an approximate method that does not always provide
the exact solution

We often refer to a heuristic method

Generally, a heuristic is designed for a specific problem, relying on its
particular structure

Greedy Algorithms 13 / 21



Evaluating a Heuristic

Practical or Empirical Criterion

The approximate algorithm is implemented, and the quality of its solutions
is evaluated in comparison to optimal solutions (or the best-known
solutions) on a benchmark (instances of the same problem accessible to
all).

Mathematical Criterion

It must be shown that the heuristic guarantees performance, it is
interesting to demonstrate a probabilistic guarantee when the heuristic
often, but not always, provides good solutions.

Remarks

Empirical and mathematical criteria can be contradictory

Often, the guaranteed mathematical solution is not practical in
real-life situations

Greedy Algorithms 14 / 21



Activity Selection Problem

Description

We have a gym where multiple events take place: we want to fit in as
many events as possible, knowing that two events cannot happen at
the same time (there is only one gym)

An event i is characterized by a start time si and an end time ei

Two events are compatible if their time intervals do not overlap

Question: How can we schedule the maximum number of events?

Greedy Algorithms 15 / 21



Activity Selection Problem

Strategy 1

Sort the events by increasing start time

Counterexample

7

Greedy Algorithms 16 / 21



Activity Selection Problem

Strategy 2

Sort the events by increasing duration

Example

3

Counterexample

7

Greedy Algorithms 17 / 21



Activity Selection Problem

Strategy 3

Sort the events by increasing end time

Example

3

Example

3

Greedy Algorithms 18 / 21



Activity Selection Problem

Strategy 3

Sort the events by increasing end time

Property

This greedy algorithm is optimal

Greedy Algorithms 19 / 21



Activity Selection Problem

Proof by Induction

Let f1 be the earliest finishing event, let’s show that there exists an
optimal solution containing this event

Let an arbitrary optimal solution be O = fi1, fi2, ..., fik where k is the
maximum number of events that can take place

There are two possibilities:

either fi1 = f1
or fi1 6= f1, we can replace fi1 with f1 because it finishes before any
other event, and since fi2 did not overlap with fi1, fi2 will not overlap
with f1 either
Therefore, we can find an optimal solution with f1 as the first event

Then, we only consider the events that do not overlap with f1, and we
repeat the process on the remaining events, hence the proof by
induction

Greedy Algorithms 20 / 21



Exercise: Activity Selection

Description

We have a gym where multiple events take place: we want to
maximize the gym’s usage time, knowing that two events cannot
happen simultaneously (there is only one gym)

An event i is characterized by a start time si and an end time ei

Two events are compatible if their time intervals do not overlap

Question: How can we maximize the gym’s usage time?

Greedy Algorithms 21 / 21


