		Notes
Google Hash Code	2	
Self-driving rides		
Hash Code 2018, Online Qualifica	tion Round	
Self-driving rides Hash Code 2018	Online Qualification Round 1/6	
Problem Statement		Notes
Problem representation	1	
2		
1		
0		
0 1 2	3	
Self-driving rides Hash Code 2018	Online Qualification Round 2/6	

Problem Statement

Notes

Notes

Problem representation

- *R*, *C* number of rows and columns in the grid
- F size of the fleet (number of vehicles)
- *N* number of rides
 - $\forall r \in [1, N], s_r, f_r$: starting and ending points of the ride
 - $\forall r \in [1, N], e_r, l_r$: earliest start time and latest end time of the ride
- *B* bonus for rides that start on time
- T time horizon
- Score for a ride: distance of the ride plus a potential bonus if it starts on time

Hash Code 2018

Objective: Maximize the score for all completed rides

Solf driving	ride
Sell-unving	nue

Online Qualification Round 2/6

Example

Example T = 15B = 22 0- $e_0 = 2$ $l_0 = 14$ 1 -- - 0 $e_1 = 4$ $l_1 = 14$ $e_2 = 0$ 0 ず 0 $l_2 = 14$ 2 3 0 1

Hash Code 2018

3/6

Notes

Notes

Example

- Grid with 3 rows and 4 columns
- 2 vehicles
- 3 rides
 - $s_0 = (0,2), f_0 = (2,2), e_0 = 2, l_0 = 14$
 - $s_1 = (2,1), f_1 = (0,1), e_1 = 4, l_1 = 14$
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14$
- Bonus: 2
- Time horizon: 15 time steps

Self-driving rides	Hash Code 2018	Online Qualification Round	3/6
Problem Statement			

Variables?

- The rides assigned to the vehicles
 - $\forall v \in [0, F-1], L_v$: the list of rides assigned to vehicle v

Greedy Algorithm

Notes

Notes

Principle

- At each step, a choice is made that seems the best at that moment
- It constructs a solution step by step
 - Without revisiting decisions
 - By making the best choice at each step
 - Hoping to achieve an optimal global result
- Greedy Approach
 - No guarantee of optimality for some problems (greedy heuristic)

Hash Code 2018

- Low-cost (compared to exhaustive enumeration)
- Intuitive choice

Self-driving ride

Online Qualification Round 5/6

Greedy Algorithm

Example

- 2 vehicles, 3 rides
 - $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14, d_2 = 4$
 - $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14, d_0 = 2$
 - $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14, d_1 = 2$

Objective: Maximize the score for all completed rides

- Sort the rides by decreasing distance
- Go through the rides and try to assign each one to a vehicle to maximize the score (distance + bonus)

Greedy Algorithm

Notes

Notes

Example

• 2 vehicles, 3 rides

•
$$s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14, d_2 =$$

- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14, d_0 = 2$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14, d_1 = 2$

• $L_0 = [2, 1]$	$t_0=9, p_0=(0,1)$
n I [0]	

•
$$L_1 = [0]$$
 $t_1 = 4, p_1 = (2, 2)$

• score = 10

Self-driving rides	Hash Code 2018	Online Qualification Round	6/6

Greedy Algorithm

Example

• 2 vehicles, 3 rides

- $s_2 = (1,0), f_2 = (3,2), e_2 = 0, l_2 = 14, d_2 = 4$
- $s_0 = (0, 2), f_0 = (2, 2), e_0 = 2, l_0 = 14, d_0 = 2$
- $s_1 = (2, 1), f_1 = (0, 1), e_1 = 4, l_1 = 14, d_1 = 2$

Improvements

You can change the strategy

- Sort rides by decreasing distance
- Sort rides by bonus potential
- **③** Use a combination of both strategies

Self-driving rides