Problem Solving Modelization

Marie Pelleau

marie.pelleau@univ-cotedazur.fr

Modelization 1 / 1

Formulation

Formulation

Model

• $V = \{v_1, \dots, v_n\}$: variables

• $\mathcal{D} = \{D_1, \dots, D_n\}$: domaines

• $C = \{C_1, \dots, C_p\}$: constraints

Modelization 2 / 1

Notes	
	_
Notes	
	_
	_

Formulation

xamples

Coloriage de carte

Description

- 3 colors: blue, pink, et green
- 2 bordering regions have different colors
- What are the unknowns?
 The colors of the regions. We have 7 variables:

 $\mathcal{V} = \{v_1, v_2, \dots, v_7\}$ What are the possible values?The colors. We have $D_1 = \dots = D_7 = \{\bullet, \bullet, \bullet\}$

odelization 3

Formulation

Examples

Coloriage de carte

Constraints

Modelization 3 / 1

Notes			
Notes			
Notes			

Formulation

mples

Send More Money

Description

SEND + MORE MONEY

Each letter represents a different number between 0 and 9. We want to know the value of each letter, knowing that the first letter of each word cannot be equal to 0

• What are the unknowns? The letters. We therefore have 8 variables $\mathcal{V} = \{s, e, n, d, m, o, r, y\}$ What are the possible values? Between 0 and 9, except for s and m. We have

$$D_s = D_m = [1, 9], D_e = D_n = D_d = D_o = D_r = D_y = [0, 9]$$

Modelization 4 / 1

Formulation

Examples

Send More Money

Description

Possible constraints

$$c_1: \qquad \qquad s*1000 + e*100 + n*10 + d \\ c_1: \qquad \qquad + m*1000 + o*100 + r*10 + e \\ = m*10000 + o*1000 + n*100 + e*10 + y$$

Modelization 5 / 1

Votes			
Votes			
Notes			

Formulation Examples

Send More Money

Description

Possible constraints

 $d+e=y+10*r_1$ $r_1 \in \{0,1\}$ $C_2: r_1 + n + r = e + 10 * r_2$ $r_2 \in \{0,1\}$ $r_3 \in \{0,1\}$ $C_3: r_2 + e + o = n + 10 * r_3$ $r_4\in\{0,1\}$ $C_4: r_3 + s + m = o + 10 * r_4$ C_5 : $r_4 = m$

 $C_6 : s \neq e \quad C_7 : s \neq n \quad C_8 : s \neq d \quad C_9 : s \neq m \quad C_{10} : s \neq o$ $C_{11}: s \neq r \quad C_{12}: s \neq y \quad C_{13}: e \neq n \quad C_{14}: e \neq d \quad C_{15}: e \neq m$ $C_{16}: e \neq o \dots \qquad C_{31}: o \neq r \quad C_{32}: o \neq y \quad C_{33}: r \neq y$

Notes

Examples

Zebra

Description

Five consecutive houses

Different colors blue, yellow, orange, red, green

- Inhabited by men of different nationalities English, Spanish, Japanese, Norwegian, Ukrainian
- Each one has a different pet dog, horse, snail, fox, zebra
- Everyone has a different favorite drink coffee, water, milk, tea, wine
- Everyone smokes different brand of cigarettes chesterfields, cravens, gitanes, kools, old golds

6/1

Notes		

Formulation

amples

Zebra

Description

- The Norwegian lives in the first house
- 2 The house next to the Norwegian's is blue
- The inhabitant of the third house drinks milk
- The Englishman lives in the red house
- 5 The inhabitant of the green house drinks coffee
- The inhabitant of the yellow house smokes kools
- The orange house is right after the green one
- The Spaniard has a dog
- Ukrainian drinks tea

Who drinks water? Who owns the zebra?

- The Japanese smokes cravens
- The old golds smoker has a snail
- The gitanes smoker drinks wine
- 13 The chesterfields smoker's neighbor has a fox
- The kools smoker's neighbor has a horse

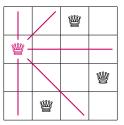
Modelization 6 / 1

Formulation

Examples

Zebra

- $\mathcal{V} = \{m_{blue}, m_{yellow}, m_{orange}, m_{red}, m_{green}, m_{English}, m_{Spanish}, m_{Japanese}, m_{Norwegian}, m_{Ukrainian}, m_{dog}, m_{horse}, m_{snail}, m_{fox}, m_{zebra}, m_{coffee}, m_{water}, m_{milk}, m_{tea}, m_{wine}, m_{chesterfields}, m_{cravens}, m_{gitanes}, m_{kools}, m_{oldgolds}\}$
- $\forall v \in \mathcal{V}, D_v = \{1, 2, 3, 4, 5\}$


lodelization 7 / 1

Notes			
Nata			
Notes			

N-queens

Description

- On a $n \times n$ chessboard
- Place *n* queens so that no queen can capture another one

Modelization

8/1

ormulation

Examples

Music: all-interval series

Description

- In the 1920s, Arnold Schönberg created a compositional principle: dodecaphony
- Consider the chromatic scale, and look for a motif in which notes appear exactly once Ontervals (between 2 successive notes) must be different

Example (Trivial solution)

odelization 9,

Notes			
-			
Notes			
Notes			

Magic Square

Description

- Place all the numbers from 1 to n^2 on an $n \times n$ square
- The sum of each row, each column, and both diagonals must be equal

	17	24	1	8	15	\rightarrow 65
	23	5	7	14	16	\rightarrow 65
	4	6	13	20	22	\rightarrow 65
	10	12	19	21	3	\rightarrow 65
	11	18	25	2	9	\rightarrow 65
<u>/</u>	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\ \ 6F
	65	65	65	65	65	65

Modelization 10 /

Formulation

Examples

Latin square

Description

Given n colors, a Latin square is an $n \times n$ colored square such that:

- all cells are colored,
- each color appears exactly once in each row,

65

• each color appears exactly once in each column

Example (Solution for n = 4)

2	3	4	1
4	1	2	3
3	4	1	2
1	2	3	4

Modelization 11 / 1

Ivotes			
Notes			
Notes			
-			
-			
·	 ·	·	