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Course outline

Lectures
@ Greedy Algorithms
@ Local Search

© Constraint Programming
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Knowledge control
o Mid-term exam

@ Final exam
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Problem

timetable

It is described by data and a question

Answering this question is solving the problem

works in all cases

and Nantes.

A problem is a general question: shortest path between two points,

In computer science, we seek a general answer, i.e., an algorithm that

Instance: A specific set of data, e.g., the shortest path between Nice

I
Traveling Salesman Problem (TSP)

Description
o Data: A list of cities and pairwise distances

@ Question: Find the shortest tour that visits each city exactly once
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Mathematical Formulation

Given a complete weighted graph, find a Hamiltonian cycle of minimum
weight
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Problem

@ Some problems are easy: Sorting numbers, Reversing a string
o Others are difficult: Traveling Salesman Problem (TSP) J
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Description

o All cities are visited exactly
once
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TSP
Description
o All cities are visited exactly
once
@ Only one tour (no sub-tours)
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TSP
TSP

USA 13509 cities, solved in 1998

e
e
By David Applegate, Robert Bixby, Vasek Chvatal, et William Cook
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TSP

Description
@ Some problems are equivalent to TSP
o scheduling problems: find the order in which to build objects

@ The "pure” version of TSP is rare, in practice often, we encounter
variations:

o Non-Euclidean
o Asymmetric
@ These variations do not make the problem easier
@ Common applications
o Vehicle routing (time windows, pickup and delivery, etc.)
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TSP

Germany 15112 cities, solved in 2001

Network of 110 processors (550 MHz) at Rice University and Princeton
Total computing time of 22.6 years
R ) S}
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TSP TSP

Sweden 24978 cities, solved in 2004 Microchip 85900 ‘cities” solved in 2006
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TSP Algorithms
o Ther exist several solvers @ Not all algorithms are the same, they vary in efficiency, differentiated
@ The most well-known solver is Concorde by William Cook (free) by:
o Computation time: slow vs fast
@ TSP solvers are typically dedicated to solving the pure problem ° Memory usage: low vs high

o We discuss complexity in terms of time (speed) and space (memory
used).

TSP solvers may not handle even slight variations (asymmetric,
additional constraints, etc.)
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Algorithms Complexity

Purpose
@ To gauge the difficulty of problems

@ To estimate the computation time or space required to solve a
problem

@ This allows for comparing algorithms

@ Expressed as a function of data size and amount
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NP-Completeness

THE major current issue in computer science
P vs NP

o Easy problems have polynomial algorithms
o Difficult problems have no known polynomial algorithm

o Key question: Does a polynomial algorithm always exist?
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P A Complesity
Problem

Not all problems are the same, they vary according to the algortihms used
to solve them

o Easy problem: we know an efficient algorithm to solve it

e Difficult problem: we do not know (yet?) an efficient algorithm to
solve it

@ Undecidable problem: no algorithm exists to solve it
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NP-Completeness

For some problems, we do not know if there exists polynomial algorithm,
we only know exponential algorithms: 2"

21 NP-Complete Problems by Karp
o Hitting-set: Set covering problem
o Knapsack
o Subset sum
o Bin packing
o Graph coloring

o Maximum clique

Remark

NP-complete problems are all equivalent and resemble each other. They
can be transformed into one another

v
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Hitting-set: Set covering

Description
Light bulbs and switches
@ A switch is connected to certain bulbs
@ When a switch is pressed, all connected bulbs are lit

o Question: What is the minimum number of switches needed to light
all bulbs?

o We want a general answer that works for all instances

20 /30

I, oo
Hitting-set: Set covering

Example

(o

n switches, 2 choices per switch = 2"
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Hitting-set: Set covering

Example
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n switches, 2 choices per switch = 2"
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Hitting-set: Set covering
Example
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Hitting-set: Set covering

Example
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n switches, 2 choices per switch = 2"
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Graph Vertex Coloring
Example
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Graph Vertex Coloring

Description

Vertices of a graph are colored such that no two adjacent vertices share

the same color

Principle of contraction and connection

Coloring a complete graph (a clique) with n vertices requires n colors

o Given 2 non-adjacent vertices a and b

o Either they have the same color = Contraction (C)
@ Or they have the different color=- Connection (L)
°

Reaching a clique = the number of vertices gives the number of

colors

p possible edges, 2 choices per edge (same color or different color) = 2P

V.
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Easy vs Difficult

@ Given a matrix

@ For each row and each column, the number of 1's is known

@ Define precisely the 0's and 1's of this matrix
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The difference can be subtle
@ Pure problem: easy
@ connectivity is introduced: difficult
o Convexity is introduced: difficult

@ connectivity and convexity are introduced : easy
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Decision Problem

A decision problem is a mathematically defined question about given
parameters that requires a yes or no answer

Example

o Given a set of cities and a distance d, is there a path visiting all cities
with a total length less than d?

@ Can a graph be colored with k colors?
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Optimization Problem

It is important to distinguish between

@ An optimal solution

@ Proving that a solution is optimal (optimality proof)

Be careful not to overgeneralize

e Finding optimality and proving it can be slow or fast
@ One can be fast and not the other
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Optimization Problem

@ An Optimization Problem involves finding the best solution among
feasible options

@ An Optimization Problems has an objective function (min or max)

@ An optimal solution minimizes (or maximizes) the objective function
among all feasible solutions

Example

@ Shortest path visiting all the cities?

@ Minimum number of colors to color a graph vertices?
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Decision vs Optimization

Every optimization problem has a corresponding decision problem asking if
a solution exists with a particular value

v

Exemple

Finding the shortest path between s and t with a cost ¢
o Decision Problem: is there a path with cost c?

o Optimality proof: is there a path with cost less than ¢?
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Decision vs Optimization

Optimization problems are often solved by solving a sequence of decision
problems

@ We find a feasible solution with cost k
@ We ask if there is a solution with cost < k and repeat the process

@ At the end, we prove optimality, because the last search does not find
a solution.

V.
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Hard Problems

@ We do not know if hard problems can be quickly solved
o Currently, hard problems cannot be efficiently solved (in polynomial
time)

o Current solutions may be inefficient (exponential time)

Approaches Covered in the Course: how to find solutions to problems

@ Using heuristics (inexact but fast)

o Complete enumeration of combinations (exact but slow)
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