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Course outline

Lectures

1 Greedy Algorithms

2 Local Search

3 Constraint Programming

Knowledge control

Mid-term exam

Final exam
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Problem

A problem is a general question: shortest path between two points,
timetable

It is described by data and a question

Answering this question is solving the problem

In computer science, we seek a general answer, i.e., an algorithm that
works in all cases

Instance: A specific set of data, e.g., the shortest path between Nice
and Nantes.
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Problem

Some problems are easy: Sorting numbers, Reversing a string

Others are difficult: Traveling Salesman Problem (TSP)
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TSP

Traveling Salesman Problem (TSP)

Description

Data: A list of cities and pairwise distances

Question: Find the shortest tour that visits each city exactly once

Mathematical Formulation

Given a complete weighted graph, find a Hamiltonian cycle of minimum
weight
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TSP

TSP

Description

All cities are visited exactly
once

Only one tour (no sub-tours)
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TSP

TSP

Description

Some problems are equivalent to TSP

scheduling problems: find the order in which to build objects

The ”pure” version of TSP is rare, in practice often, we encounter
variations:

Non-Euclidean
Asymmetric

These variations do not make the problem easier

Common applications

Vehicle routing (time windows, pickup and delivery, etc.)
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TSP

TSP

USA 13 509 cities, solved in 1998

By David Applegate, Robert Bixby, Vašek Chvátal, et William Cook
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TSP

TSP

Germany 15 112 cities, solved in 2001

Network of 110 processors (550 MHz) at Rice University and Princeton

Total computing time of 22.6 years
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TSP

TSP

Sweden 24 978 cities, solved in 2004
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TSP

TSP

Microchip 85 900 “cities” solved in 2006
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TSP

TSP

Ther exist several solvers

The most well-known solver is Concorde by William Cook (free)

TSP solvers are typically dedicated to solving the pure problem

TSP solvers may not handle even slight variations (asymmetric,
additional constraints, etc.)

Introduction 14 / 30



Algorithms Complexity

Algorithms

Not all algorithms are the same, they vary in efficiency, differentiated
by:

Computation time: slow vs fast
Memory usage: low vs high

We discuss complexity in terms of time (speed) and space (memory
used).
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Algorithms Complexity

Algorithms Complexity

Purpose

To gauge the difficulty of problems

To estimate the computation time or space required to solve a
problem

This allows for comparing algorithms

Expressed as a function of data size and amount
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Algorithms Complexity

Problem

Not all problems are the same, they vary according to the algortihms used
to solve them

Easy problem: we know an efficient algorithm to solve it

Difficult problem: we do not know (yet?) an efficient algorithm to
solve it

Undecidable problem: no algorithm exists to solve it
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Algorithms Complexity

NP-Completeness

THE major current issue in computer science

P vs NP

Easy problems have polynomial algorithms

Difficult problems have no known polynomial algorithm

Key question: Does a polynomial algorithm always exist?
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Algorithms Complexity

NP-Completeness

For some problems, we do not know if there exists polynomial algorithm,
we only know exponential algorithms: 2n

21 NP-Complete Problems by Karp

Hitting-set: Set covering problem

Knapsack

Subset sum

Bin packing

Graph coloring

Maximum clique

Remark

NP-complete problems are all equivalent and resemble each other. They
can be transformed into one another
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Algorithms Complexity

Hitting-set: Set covering

Description

Light bulbs and switches

A switch is connected to certain bulbs

When a switch is pressed, all connected bulbs are lit

Question: What is the minimum number of switches needed to light
all bulbs?

We want a general answer that works for all instances
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Algorithms Complexity

Hitting-set: Set covering

Example

n switches, 2 choices per switch ⇒ 2n
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Algorithms Complexity

Graph Vertex Coloring

Description

Vertices of a graph are colored such that no two adjacent vertices share
the same color

Principle of contraction and connection

Coloring a complete graph (a clique) with n vertices requires n colors

Given 2 non-adjacent vertices a and b

Either they have the same color ⇒ Contraction (C)

Or they have the different color⇒ Connection (L)

Reaching a clique ⇒ the number of vertices gives the number of
colors

p possible edges, 2 choices per edge (same color or different color) ⇒ 2p
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Algorithms Complexity

Graph Vertex Coloring

Example
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Algorithms Complexity

Easy vs Difficult

Given a matrix

For each row and each column, the number of 1’s is known

Define precisely the 0’s and 1’s of this matrix

The difference can be subtle

Pure problem: easy

connectivity is introduced: difficult

Convexity is introduced: difficult

connectivity and convexity are introduced : easy
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Problems Decision

Decision Problem

A decision problem is a mathematically defined question about given
parameters that requires a yes or no answer

Example

Given a set of cities and a distance d , is there a path visiting all cities
with a total length less than d?

Can a graph be colored with k colors?
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Problems Optimization

Optimization Problem

An Optimization Problem involves finding the best solution among
feasible options

An Optimization Problems has an objective function (min or max)

An optimal solution minimizes (or maximizes) the objective function
among all feasible solutions

Example

Shortest path visiting all the cities?

Minimum number of colors to color a graph vertices?
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Problems Optimization

Optimization Problem

It is important to distinguish between

An optimal solution

Proving that a solution is optimal (optimality proof)

Be careful not to overgeneralize

Finding optimality and proving it can be slow or fast

One can be fast and not the other
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Problems

Decision vs Optimization

Every optimization problem has a corresponding decision problem asking if
a solution exists with a particular value

Exemple

Finding the shortest path between s and t with a cost c

Decision Problem: is there a path with cost c?

Optimality proof: is there a path with cost less than c?
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Problems

Decision vs Optimization

Optimization problems are often solved by solving a sequence of decision
problems

We find a feasible solution with cost k

We ask if there is a solution with cost < k and repeat the process

At the end, we prove optimality, because the last search does not find
a solution.
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Problems

Hard Problems

We do not know if hard problems can be quickly solved

Currently, hard problems cannot be efficiently solved (in polynomial
time)

Current solutions may be inefficient (exponential time)

Approaches Covered in the Course: how to find solutions to problems

Using heuristics (inexact but fast)

Complete enumeration of combinations (exact but slow)
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